Afterschool Matters, Fall 2016

National Institute on Out-of-School Time

Follow this and additional works at: http://repository.wellesley.edu/afterschoolmatters

Part of the Social and Behavioral Sciences Commons

Recommended Citation
http://repository.wellesley.edu/afterschoolmatters/34

This Book is brought to you for free and open access by the Wellesley Centers for Women at Wellesley College Digital Scholarship and Archive. It has been accepted for inclusion in Afterschool Matters by an authorized administrator of Wellesley College Digital Scholarship and Archive. For more information, please contact ir@wellesley.edu.
VOICES FROM THE FIELD
The Plague of the Broken Crayons and the Heads That Haunted Us
Sara Cole

NEW FROM NIOST
Measuring Program Quality: Evidence of the Scientific Validity of the Assessment of Program Practices Tool
Allison Tracy, Linda Charmaraman, Ineke Ceder, Amanda Richer & Wendy Surr

Infrastructures to Support Equitable STEM Learning Across Settings
William R. Penuel, Tiffany L. Clark & Bronwyn Bevan

Getting the Right Fit: Designing a Professional Learning Community for Out-of-School Time
Femi Vance, Emily Salvaterra, Jocelyn Atkins Michelsen & Corey Newhouse

Creating Holistic Partnerships Between School and Afterschool
Kenneth Anthony & Joseph Morra
Afterschool Matters
Editorial Review Board

Dale Curry
International Institute for Human Service
Workforce Research and Development,
Kent State University

Tina Kauh
Robert Wood Johnson Foundation

Anne Lawrence
Center for Educational Options

Rebekka Lee
Harvard School of Public Health

Rebecca London
University of California Center
for Collaborative Research for
an Equitable California

Ellen Markowitz
SuperStarters Consulting

Deborah Moroney
American Institutes for Research

Carol Tang
Children’s Creativity Museum

See the inside back cover for the call for papers for future issues of Afterschool Matters.
**VOICES FROM THE FIELD**

**The Plague of the Broken Crayons and the Heads That Haunted Us**

Sara Cole

Broken crayons. Board games with half the pieces missing. “Toys” that were never intended for children. Why are we still fighting this battle?

---

**NEW FROM NIOST**

**Measuring Program Quality: Evidence of the Scientific Validity of the Assessment of Program Practices Tool**

Allison Tracy, Linda Charmaraman, Ineke Ceder, Amanda Richer & Wendy Surr

Can training improve raters’ accuracy in using a program observation tool designed for program self-assessment and continuous improvement?

---

**Infrastructures to Support Equitable STEM Learning Across Settings**

William R. Penuel, Tiffany L. Clark & Bronwyn Bevan

Giving all youth access to quality STEM learning requires both intentional design and infrastructures that support holistic learning ecosystems.

---

**Getting the Right Fit: Designing a Professional Learning Community for Out-of-School Time**

Femi Vance, Emily Salvaterra, Jocelyn Atkins Michelsen & Corey Newhouse

Professional learning communities are an effective means of staff development. How can facilitators design PLCs to fit the needs of participants and their programs? A panel of experts has answers.

---

**Creating Holistic Partnerships Between School and Afterschool**

Kenneth Anthony & Joseph Morra

Interviews with school and afterschool leaders and front-line staff reveal both disconnections and opportunities for fuller communication.
During the overpowering winter of 2015 in New England, I left my home one evening during the tail end of a snowstorm. My son had suddenly developed an ear infection, so I was on my way to the local drugstore, which had, remarkably, remained open. The streets had closed much earlier in the day.

Trudging through the soft snow piled onto what had once been a sidewalk, I passed no other walkers, no vehicles, not even a snowplow. When I left the store with my son’s prescription, I headed back the way I had come. Nothing had changed—except that I saw my own footprint in the still, silent snow, letting me know that I had been there before.

Recently, I participated in the launch of the second year of the newly structured Afterschool Matters Fellowship, an intensive professional development opportunity for out-of-school time (OST) professionals. Begun by the Robert Browne Foundation as a set of local projects, the fellowship went national under the auspices of the National Institute on Out-of-School Time (NIOST) in 2015. Our partner continues to be the National Writing Project, and the Robert Browne Foundation continues to fund the fellowship through a generous legacy grant.

The fellowship engages OST practitioners in facilitated inquiry into their own practices and programs. The goals are to improve the quality of the fellows’ programs and to develop resources that can have an impact on the broader field.

At the writing retreat that launched this year’s fellowship, I was excited to imagine the products and resources our fellows will bring to the OST field. Their areas of concentration include personalized OST learning experiences, statewide professional development programs, youth participatory research, participant engagement in OST programs, youth worker engagement, social and emotional learning, and professional development strategies.

As I needed my footsteps to let me know that I had walked through a mile of snow, so OST professionals need to think every day about what we leave behind. How do we know that we have been at that program, interacted with those youth, spent time training or coaching those staff? What evidence shows that our work has helped to guide youth toward healthy and productive lives? How can we make a lasting impact that goes beyond our own practice and programs? Participants in the Afterschool Matters Fellowship are answering those questions, in part, by producing artifacts: journal articles, slide decks, blogs, webinars.

The authors in this issue of Afterschool Matters are leaving footprints. They share strategies for making a lasting impact on the field: by validating instruments that measure program quality; by creating infrastructure to support learning in specialized areas such as STEM; by training OST staff in professional learning communities, and by developing school-afterschool partnerships that can foster shared vision. To kick it all off, the opening essay by an Afterschool Matters Fellow points out that even crayons can remind us of our sustained focus on quality OST experiences for all children and youth.

I have always placed a lot of stock in artifacts. When I walk into an afterschool program, one of the clearest and quickest things I use to assess the situation is how the room looks. What activities and supplies are available? What is on the walls? What is on the desk in the corner?

When I climb on my soapbox about quality programming—a box that is never far from where I stand—I often refer to the box of sad, broken crayons. Anyone who works in the field knows: We have all seen that collection of crayons, typically accompanied by its partners in crime, the coloring pages or, even worse, the photocopied coloring pages. Those stubby old crayons have become my symbol of the constant struggle to provide appropriate resources for afterschool programs. If the crayons don’t work for you as an image, feel free to substitute the board games in the torn boxes with the missing pieces, the naked dolls, or the books with pages that are missing or barely attached.

How can programs be exciting, innovative, and engaging when providers and youth do not have what they need? How can youth feel valued and respected when they are surrounded by worn-out and broken materials?

Why are we still fighting this battle?

About a year after I came to the Rochester YMCA to take a senior-level position overseeing youth development, I also became the interim director of one of our struggling child development centers. The center’s director and the branch’s executive director had both left to take other positions; it felt as though the only certainty was that nothing was working as it should be.

That year, I woke up at 4:00 in the morning, Monday through Friday; so I could be in the center when it opened at 6:00. I often stayed until 8:00 or 9:00 in the morning. WELCOME
That winter seemed to last all year. I replaced most of the staff. I learned the names of the parents and their children. I sometimes cried, out of frustration and exhaustion, in my car on the way home. I remembered what it was like to work with youth and with parents and with staff every day.

Eventually we hired a really great director and a wonderful assistant director. Eventually there were days that I did not have to walk through that center and weekends that I forgot to wake up in the middle of the night and feel relieved. Eventually the remaining two heads found their way out of my office. When I went to find them to take a photo, they had disappeared.

Those heads may be missing, but the sad crayons (and their ilk) probably still crop up now and then. Somehow programs don’t know how important it was for quality programs to have high-quality toys. At some point in the speech, I would grab the head and wave it close to the frightened listener to make my point.

I put the heads in my office so I could not help but see them each day and remember how hard we needed to continue to work. They became an effective (if ridiculous) metaphor for what I wanted our programs to be—and of what I definitely did not want them to be. Soon after, our chief financial officer asked for one of the heads to place in her office so she, too, could be constantly reminded of what we were working toward (and against).

Out-of-school time (OST) youth programs are inherently difficult to assess. They are often very dynamic: Many youth interact with one another and with staff members in various physical environments. Despite the challenge, measuring quality is critical to help program directors and policy makers identify where to improve and how to support those improvements.

This article describes recent research on the Assessment of Program Practices Tool (APT), establishing its strength as an evaluation and tracking tool for OST programs. Funded by the William T. Grant Foundation and Virginia B. Toulmin Foundation, the validation was conducted in two phases. The first phase was designed to evaluate the scientific rigor of the tool. Based on the findings from the first phase, the second aimed to inform improvements in the tool and its training. Our testing so far shows that online video-based training needs to be more specialized in order to improve rating reliability for high-stakes users, such as third-party evaluators.

NEW FROM NIOST

Evidence of the Scientific Validity of the Assessment of Program Practices Tool

Allison Tracy, Linda Charmaraman, Ineke Ceder, Amanda Richer, and Wendy Surr

Measuring Program Quality: Evidence of the Scientific Validity of the Assessment of Program Practices Tool

ALLISON TRACY has over 15 years of experience providing methodological and statistical consultation for researchers in a wide variety of disciplines, topics, and institutions. She has worked on the psychometric analysis of A Program Assessment System (APAS) and its components, including the Assessment of Program Practices Tool (APT).

LINDA CHARMARAMAN, PhD, co-principal investigator of the APT Validation Study II, is a research scientist at the Wellesley Centers for Women specializing in positive youth development. She has conducted research and evaluations of in-school and out-of-school time (OST) programs for over 12 years.

INEKE CEDER is a research associate at the Wellesley Centers for Women, where she has been involved with projects on child and adolescent development, sexual education, and women’s leadership. She was the data collection manager and survey developer for Phase 2 of the APT Validation Study.

AMANDA RICHER is a research associate for the National Institute on Out-of-School Time and assistant methodologist for the Wellesley Centers for Women. She has been involved in psychometric testing of OST assessments and has supported research in youth development.

WENDY SURRE, Senior Researcher at the American Institutes for Research, has more than 30 years of experience leading research and evaluation studies and other educational initiatives. While at NIOST, she co-created APAS, including developing the APT and a set of teacher, staff, and youth survey instruments for measuring student nonacademic outcomes. She served as co-principal investigator and project director for Phase 1 of the APT Validation Study.

Out-of-school time (OST) youth programs are inherently difficult to assess. They are often very dynamic: Many youth interact with one another and with staff members in various physical environments. Despite the challenge, measuring quality is critical to help program directors and policy makers identify where to improve and how to support those improvements.

This article describes recent research on the Assessment of Program Practices Tool (APT), establishing its strength as an evaluation and tracking tool for OST programs. Funded by the William T. Grant Foundation and Virginia B. Toulmin Foundation, the validation was conducted in two phases. The first phase was designed to evaluate the scientific rigor of the tool. Based on the findings from the first phase, the second aimed to inform improvements in the tool and its training. Our testing so far shows that online video-based training needs to be more specialized in order to improve rating reliability for high-stakes users, such as third-party evaluators.
The Assessment of Program Practices Tool

The APT is an observational instrument created in 2005 by Beth Miller and Wendy Surr of the National Institute on Out-of-School Time (NIOST) to measure OST process quality: observable aspects of a program in action. Research suggests that process quality contributes to the 21st-century skills, attitudes, and behaviors youth need to be successful in school and the workplace (Miller, 2005).

The APT is one component of A Program Assessment System (APAS), an integrated quality and outcome assessment system developed by NIOST in partnership with the Massachusetts Department of Elementary and Secondary Education 21st Century Community Learning Centers (21st CCLC) initiative. Currently, the APT is used in 3 states and in Canada by over 1,500 individuals and 600 OST programs. The APT is designed to support program self-assessment and improvement efforts. Increasingly, it is also being used by external stakeholders, such as funders and sponsors of afterschool programs, to ensure that programs are implementing quality features. External observers are using the APT to assign quality levels, often as part of a quality rating and improvement system, in order to identify programs or program aspects in need of improvement.

The APT measures aspects of process quality in three key domains: supportive social environment, opportunities for engagement in learning, and program organization and structure. As shown in Table 1, these three domains have 12 subdomains called quality areas. The items measuring a given quality area might be drawn from different sections of the APT, which is laid out to follow specific program times: arrival, transition, program organization & structure, opportunities for engagement in learning & skill building, and homework. Each item is rated on a 4-point scale, where 4 represents the desired practice. Detailed item-specific “anchors” define each rating point and provide observable indicators to guide scoring. Figure 1 illustrates the anchors for a conditional item: one that can be rated only if the condition, in this case youth misbehavior, is observed. The findings show that the APT items designed to measure reliable scale scores.

A rigorous tool must be able to capture different levels of activities within a program. Finding 1: APT items can be combined to create reliable scale scores. The findings show that the APT items designed to measure the same quality area work together as a set to distinguish among programs with varying levels of quality and that items designed to measure one quality area are distinct from items designed to measure another quality area. Furthermore, the study found that APT items could be combined to produce an overall rating of quality.

We also established that the items in each APT section representing a specific time of day could be reliably combined into a scale score to assess the quality of, for example, homework time or activity time. This finding is particularly important for programs that opt to focus their self-assessment on particular times of the program day, rather than using the entire APT.

Finding 2: The APT can be used to compare programs or activities within a program. A rigorous tool must be able to capture different levels of quality, from very low to very high. A tool is not useful if students respond too mild youth behaviors such as reminding youth to keep their hands to themselves multiple times while they are in line.

Table 1. Three APT Quality Domains and Their Associated Quality Areas

<table>
<thead>
<tr>
<th>Domain</th>
<th>Quality Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supportive social environment</td>
<td>Welcoming and inclusive environment</td>
</tr>
<tr>
<td></td>
<td>Supportive staff–youth relationships</td>
</tr>
<tr>
<td></td>
<td>Positive peer relationships</td>
</tr>
<tr>
<td></td>
<td>Relationships with families</td>
</tr>
<tr>
<td>Program organization &amp; structure</td>
<td>Space conducive to learning</td>
</tr>
<tr>
<td></td>
<td>Varied and flexible program offerings</td>
</tr>
<tr>
<td></td>
<td>Positive behavior guidance</td>
</tr>
<tr>
<td></td>
<td>High program activity organization</td>
</tr>
<tr>
<td>Opportunities for engagement in learning &amp; skill building</td>
<td>Youth autonomy and leadership</td>
</tr>
<tr>
<td></td>
<td>Youth engagement and participation</td>
</tr>
<tr>
<td></td>
<td>Quality of homework support</td>
</tr>
<tr>
<td></td>
<td>Staff practices that promote engagement &amp; thinking</td>
</tr>
</tbody>
</table>

Figure 1. Sample APT Rating Anchors

<table>
<thead>
<tr>
<th>Behavior</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staff do not use simple reminders to redirect behavior OR always over-react to youth behavior.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staff sometimes use simple reminders to redirect behavior but over-react to youth behavior.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staff usually use simple reminders to redirect behavior but over-react slightly to youth behavior.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staff always use simple reminders and are always calm when handling youth behavior.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
it captures small distinctions among very high-quality programs but cannot distinguish between moderate- and low-quality programs. Therefore, we tested whether, among all the programs studied, scale scores ranged along the full continuum from very low to very high.

We used statistical models to examine variability in quality across sites and among activities within sites. Results show statistically significant differences in the quality of programs, confirming that the APT can be used to distinguish between one program and another either in overall quality or in specific quality areas. Scales created for specific time-of-day sections were less able to capture differences between or within programs—except for the activity time scale, whose scores captured statistically significant quality differences among activities within a site. Programs thus can use activity time scale scores for self-assessment.

Finding 3: APT scale scores are not overly influenced by program fluctuations.

A quality assessment instrument must produce stable quality ratings that are not overly sensitive to day-to-day fluctuations in practices. When a program is assessed during a short time window, real change in quality is not expected to occur, so the APT scores should be similar. When we assessed test-retest stability for individual items, quality areas, and time-of-day scales, we found that internal observers produced ratings that were stable over the short term. Observers should therefore be able to use the APT to capture aspects of quality that are stable across multiple observation days.

Finding 4: Perfect interrater agreement is hard to achieve.

A quality assessment tool must be able to produce accurate quality ratings that are free from variations due to subjective opinions and perceptions. No matter who conducts the observation, a program’s quality ratings should be the same.

When we tested interrater reliability for individual APT items, findings were mixed. The average rate at which both observers assigned the exact same rating was 59 percent, the range for all raters was 21 percent to 100 percent. Few items passed statistical tests of interrater agreement. Based on the item-level results, some APT items were dropped or revised, and newly revised items and their anchors were piloted. These improvements were incorporated into the instrument for Phase 2 of the APT Validation Study.

APT Validation Study Phase 2: Training

Phase 1 findings suggest that, although individual raters are consistent over time, they do not always agree with other raters. Researchers have had the same result with similar observational instruments (Hoyt & Kerns, 1999, Lumley & McNamara, 1993). Growing interest in use of the APT for high-stakes purposes, such as quality rating and improvement systems, led to interest in enhancing interrater reliability. Training and practice have been found to increase rating scoring accuracy (Hoyt & Kerns, 1999; Krouch, Read, &

Scoring accuracy (Hoyt & Kerns, 1999; Krouch, Read, &

Finding 5: The APT measures program aspects that are directly related to youth outcomes.

Those interested in assessing program quality want to be confident that the quality areas being measured are important to youth experiences and outcomes. To examine the concurrent and predictive validity of the APT, we analyzed the relationships between the quality areas and youth responses to the SAYO-Y. Results show many associations between APT ratings and youths’ program experiences, as summarized in Table 2. For instance, youth perceptions of having a supportive adult show numerous connections with APT ratings. Associations between APT ratings and youths’ attitudes and beliefs are even more prevalent and strong, the strongest correlation is between youths’ sense of competence as learners and several APT quality areas.

Revisions

Based on the item-level results, some APT items were dropped or revised, and newly revised items and their anchors were piloted. These improvements were incorporated into the instrument for Phase 2 of the APT Validation Study.
von Randow, 2007; Schlientz, Riley-Tillman, Brutsch, Walcott, & Chafouleas, 2009). We therefore developed an enhanced APT training with three components: 1. The comprehensive APT Anchors Guide, which offers scoring criteria for each item (see Figure 1) 2. Master-scored online practice video clips with detailed rationales for the assigned scores 3. Advanced in-person training 4. Targeted feedback with recommendations for additional practice

Strict use of the APT Anchors Guide was intended to focus observers solely on the observable behavior of staff and youth. Enhanced training, including the video clips, was designed to minimize subjective interpretation and discrepancy among raters. Our primary research question was, “Do trainees who undergo APT training and practice improve in the accuracy of their APT ratings?”

Methods

Participating Trainees
We identified a sample of APT trainees to reflect the expected profile of likely APT raters with respect to geography, prior experience, age, and familiarity with APT. Our sample of 39 trainees was drawn from the New England area and from the South. The sample was 69 percent female and 31 percent male. Twenty-six percent White, 26 percent Black, and 17 percent non-Black minority. Twenty-six percent of trainees reported that they had ever used the APT Anchors Guide. The majority had experience with programs for elementary education, ages served, and race/ethnicity of youth served. Programs, based on considerations such as size, type, location, and youth misbehavior). The enhanced training, as outlined above, had three major components:

- **APT Anchors Guide.** A key aspect of training was providing the comprehensive Anchors Guide in order to build raters’ familiarity with and use of the anchors.
- **Master-Scored Videos.** To create video clips for use in the study we selected eight New England afterschool programs, based on considerations such as size, type, location, ages served, and race/ethnicity of youth served. To capture a variety of program practices, these programs were videographed over four days. Each recording was subdivided into a number of shorter clips, organized by the time-of-day sections of the APT. The 350 resulting video clips ranged in length from one minute to 20 minutes. Each clip was reviewed by up to four master raters who had extensive experience in afterschool and were familiar with the APT. Clips were considered for inclusion in APT exams and practice modules if the audio and video quality was good and if agreement among master scorers was high. Furthermore, the clips represented various anchors and conditional items (for example, “if there is youth misbehavior”). Each APT practice module and exam included one clip from each APT time-of-day section. All were approximately one hour long, included only one clip from any one of the eight recorded programs, and offered a good representation of low-, medium-, and high-scoring clips. Following each time-of-day video clip, the online program displayed the relevant APT items, with their lowest and highest scores, and trainees rated the video clip on each of the items in that APT section. Immediately afterwards, they viewed the master score and the reasoning behind that rating were displayed. In practice modules, trainees could go back to review the video clips after seeing the master scores. The exams did not offer this option.
- **In-Person Training.** After rating the videos, trainees participated in a six-hour in-person APT training event. Two highly experienced APT lead trainers focused the in-person training on the 15 APT items on which trainees had the lowest rates of agreement with master scorers in the exams. The trainers used video clips from the exams to demonstrate common sources of ambiguity, such as interactions that fell between a rating of 2 and 3. Small- and whole-group discussions enabled the trainers to open a dialogue so trainees could come to a collective conclusion about the evidence supporting the master score. Agreeing about the evidence is a key step in improving accuracy.

Targeted Feedback and Additional Practice.

In the open-ended evaluations, a high percentage of trainees recommended using shorter video clips. The reasons they gave were attention span limits for videos, issues with narrow camera angles and audio quality, and a preference for focusing on a limited program snapshot. In order to test the hypothesis that training would improve in the match between trainee ratings and master scores, we examined the results of exams 2–4. To do so, we made statistical adjustments to compensate for differences among the exams in such characteristics as the total quality score of all the clips, clip duration, and participant age group. We also adjusted for lack of compliance with the exam protocol, as when trainees cut the clip short rather than viewing to the end. This analysis resulted in four significant findings.

Data Collection

The primarily data collection instruments were video exams, one at baseline and one after each of the APT Anchors Guide, after the in-person training, and after the targeted feedback. The final exam took place within three weeks of the in-person training. It included a qualitative process evaluation asking trainees about their experience with the training materials and their level of confidence in assigning APT ratings.

Analysis and Results

Between the baseline exam and exam 2, we asked trainees to rate at least one of the two practice clips for each APT time-of-day section, aiming for six practice clips. They rated an average of 9.6 clips. Between exams 3 and 4, participants rated an average of 2.13 clips out of the recommended four. Trainees reported varying levels of use of the APT Anchors Guide: 64 percent said they used it always, 31 percent some of the time, and 5 percent rarely. Participants who were White, female, older, or from the South completed more practice modules and referred more often to the guide.

Across all four exams, 53 percent of the trainees’ ratings matched the master scores exactly. Trainees were more likely to match the master scores when scores were the same, with the highest level of agreement among the raters than the two practices. In general, the trainees who were in middle school rather than elementary school. White and non-Black minority trainees were more likely to match the master score than were Black trainees. In several time-of-day sections, trainees had more matches when the clips were shorter; only in the homework section did longer clips yield more matches. In the open-ended evaluations, a high percentage of trainees recommended using shorter video clips. The reasons they gave were attention span limits for videos, issues with narrow camera angles and audio quality, and a preference for focusing on a limited program snapshot. In order to test the hypothesis that training would improve in the match between trainee ratings and master scores, we examined the results of exams 2–4. To do so, we made statistical adjustments to compensate for differences among the exams in such characteristics as the total quality score of all the clips, clip duration, and participant age group. We also adjusted for lack of compliance with the exam protocol, as when trainees cut the clip short rather than viewing to the end. This analysis resulted in four significant findings.

Finding 6: Video practice shows promise as effective training tool.

The process of rating practice videos using the APT Anchors Guide and receiving immediate feedback on the rationale for the master scores led to significant improvement in trainees’ rate of agreement with master scores, from an average of 40 percent on the baseline exam to an average of 52 percent on the second exam. One trainee noted in the qualitative process evaluation, “I have become more discrete in my ratings, and am much more comfortable using the anchors as a guide when providing evidence for why I rated a certain way.”
Finding 7: The in-person training did not improve average rating accuracy.
Exam 3, administered after the in-person training, showed a significant overall decline in trainees’ rate of agreement with master scores, by an average of 6 percentage points. However, of the 39 participants, 22 participants showed improvement in accuracy across the full training experience. In all four areas, average trainee scores improved on mastery of content and behavior organization. In all four areas, average trainee scores improved on mastery of content and behavior organization.

We sought but did not find characteristics that distinguished trainees who improved from those whose scores declined. However, participants’ comments may shed some light. Many participants said that they found the in-person training helpful because they could ask questions and share insights with others. However, some participants did not find that the training improved their accuracy.

Finding 8: Targeted feedback and additional video practice did not further improve scores.
The final exam, administered after recommendations for targeted practice after exam 3, did not yield significant improvement in trainees’ agreement with master scores. Analysis of changes in scores for time-of-day sections of the APT yielded similar results, with the greatest improvement emerging between the baseline and exam 2, after the video training. Trainees may have experienced a plateau effect, even though the highest rate of agreement with master scores on exam 3 was only 86 percent. Another explanation could be burn-out due to the heavy demands the study made on participants.

Finding 9: High-priority APT quality areas showed the most improvement.
Four of the APT program quality areas showed improvement in ratings: supportive staff-youth relations, positive peer relations, behavioral guidance, and high program activity organization. In all four areas, average trainee scores showed considerable improvement from baseline to exam 2, ranging from 8 percentage points for behavioral guidance to 20 percentage points for positive peer relations. Three of the four quality areas showed improvement in accuracy across the full training experience, from baseline to exam 4. The fourth area, supportive staff-youth relations, showed an average decline in accuracy of 3 percent, with a particularly pronounced decline of 19 percentage points between exams 3 and 4. However, between those two exams, the individuals whose scores improved had relatively low average scores of 49 percent at exam 3 while those whose scores declined had higher average scores of 55 percent. Targeted feedback seems to have improved the scores of trainees who struggled to rate the staff-youth relations items accurately. Average scores in the quality area of behavioral guidance were particularly volatile. After improving by 8 percentage points at exam 2, they fell by 23 percentage points at exam 4. As expected, they rebounded to improve by 21 percentage points at exam 4. In the post-study survey, trainees frequently said that they disagreed with the master scores for behavioral guidance items. One trainee noted, “I think also I may disagree with some of the master scores in general. Although I understand we need to use the master scores as our guide, ... what the raters sometimes scored as inappropriate or disruptive behavior I felt was kids being kids.”

Cultural differences in the interpretation of such factors as child behavior may have been responsible for some of the discrepancy in agreement scores among trainees from different racial and ethnic backgrounds.

Limitations, Implications, and Next Steps
We found a promising pattern of improved scores after trainees were exposed to the APT Anchors Guide and engaged in video-based practice. These findings suggest that future reliability trainings should focus on increasing familiarity with and expert knowledge of the guide. Ample opportunities for video practice should focus on improving accuracy by emphasizing links among ratings, particular events in the clips, and corresponding anchors.

This study has revealed that some APT items are more open to cultural-specific interpretations than others and that some videos are more ambiguous than others. Point of view is a key aspect of observational research, so there must be room for people from different cultural backgrounds to pose alternative interpretations of behaviors and to have different views of what constitutes low-quality and high-quality social interaction. We are seeking additional funding to address any potential cultural bias in some APT items or training materials.

We also found that the potential and the limitations of using video for training. Video technology is widely available and convenient, but problems such as connectivity issues can limit its usefulness. Furthermore, even with professional videographers using high-quality sound and video equipment, capturing the essence of youth-adult interactions is a tall order. Camera angles can provide limited views, and audio quality will vary depending on the size of the group and room. Early video practice did help participants modestly improve in their accuracy. Still, editing all videos to focus more carefully on the same visual and audio nuances may improve the ability of future video training to improve participant accuracy, particularly since people have limited attention spans for video viewing. The average viewing time for internet videos is only 2.7 minutes (Statistic Brain, 2016).

This article outlines the preliminary steps we have taken to test reliability training so that it can be further refined for wide adoption. Next steps include achieving an acceptable and consistent level of rater accuracy through video-based reliability training. An acceptable accuracy rating is usually set at 80 percent for similar tools in the field, such as the Center for Youth Program Quality’s Youth Program Quality Assessment and TeachStone’s Class (Bell et al., 2012). This prototype of a reliability training system with four exams must be further fine-tuned before going into the field for reliability certification. For instance, we would improve the system by taking into account the valuable trainee feedback, ranging from clarifying key terms in the APT Anchor Guide to carefully selecting video clips that are unmatched.

The compelling reason to train observers to rate program quality accurately is that programs’ use of such ratings is strongly associated with improving important quality areas such as supportive youth-staff relations and positive peer relations (Miller, 2003). As shown in the youth survey results in Table 2, these areas are significantly related to positive youth outcomes, such as sense of competence as a learner, sense of social competence, and future planning and expectations. Ultimately, we are refining the APT training so that it and the APT itself can be implemented more widely, where they can have an impact on youth program practice and policy and on the use of research evidence to support that critical work.

References
Infrastructures to Support Equitable STEM Learning Across Settings

Willam R. Penuel, Tiffany L. Clark, and Bronwyn Bevan

STEM learning is a process that unfolds through dynamic interactions over time and across settings. Formal education in schools is not the only—or necessarily the most significant—context for STEM learning.

Important opportunities also occur in out-of-school time (OST), including during designed programs before and after school, through the support of mentors, and via online communities (Adams, Gupta, & Cotumaccio, 2014; Bell, Tzou, Bricker, & Barnes, 2012; Ito et al., 2013). Collectively, these opportunities make up a “STEM learning ecosystem,” which comprises the interactions among learners, the settings in which learning occurs, and the learners’ communities and cultures (National Research Council, 2015, p. ES-2).

Advancing equity in STEM requires providing young people of all backgrounds with a rich array of resources for learning across the multiple settings of their lives—in school, in community organizations, in neighborhoods, in families, and in online communities. A recent National Research Council (2015) report called out the need to map learning opportunities in communities and understand how youth navigate those opportunities. The field could promote equity, the report suggested, both by addressing gaps in the STEM learning ecosystem and by connecting youth from underrepresented groups—girls, for example—and African-American, Latino/a, and Native youth—to existing opportunities. The report also called for building a lasting “STEM learning infrastructure” (p. ES-2) to address inequities that limit the access of youth from underresourced communities to STEM careers and academic pursuits (National Research Council, 2013).

This paper outlines principles for building a diverse and connected ecosystem and the features of a STEM learning infrastructure to promote equity. Our recommendations are derived from a review of literature on general strategies for leveraging diversity in STEM learning and on specific programmatic efforts to promote young people’s learning across settings. The research on equity shares a premise that diverse everyday experiences are a resource rather than a barrier to young people’s learning (Gutiérrez & Rogoff, 2003; Nussbaum, Rosebery, Warren, & Lee, 2014). The goal of STEM education, then, should be to not eliminate perceived deficits in students, their families, or their communities, but to find connections between each of these and disciplinary knowledge and practices (Warren, Ogonowski, & Pothier, 2003).

Because the literature on programs that make explicit attempts to promote learning across settings is relatively new and sparse, we sought to identify programs that were grounded in this premise and that had some evidence of positive youth outcomes. Our review included designs that show at least some promise of expanding youth access to STEM learning, in and across settings. The result is a set of principles for designing equitable STEM learning ecosystems and a corresponding set of infrastructures necessary to support such systems.

**Design Principles to Support Equitable Learning Across Settings**

Our literature review revealed five design principles for translating ideas about equitable STEM learning ecosystems into program structures. To promote equitable cross-setting learning, afterschool programs must:

1. Draw on values and practices from multiple settings to articulate shared learning goals and to identify resources that can help to meet those goals
2. Structure partnerships so that multiple stakeholder groups can co-design initiatives to promote learning across settings
3. Engage young people in building stories, imaginative worlds, and artifacts that make connections and have meaning across learning settings
4. Help youth identify with the learning enterprise by supporting and naming them as contributors to authentic endeavors
5. Intentionally broker youth learning across settings, including preparing educators and family members to be brokers

These design principles have been applied to the development of learning opportunities, but they have not been widely tested as a set. Rather, they are useful guides that can be verified through empirical study and then refined or even dropped (Bell, Hoadley, & Linn, 2004). These five design principles are intended to serve as provisional guides to be tested and refined over time through research and development.
department to identify links among comparing practices, craft practices, and local knowledge. The researcher-facilitators explicitly drew out the computational principles already present in local crafting cultures. They challenged youth to reflect on how computational tools could be useful in their community and reflect their own interests and identities. Creating designs that reflected their hybrid experiences in both Western and indigenous communities, students easily connected the e-textile project and their NaVaTis class. This project underscores how community value systems can provide a context for learning about computing while linking home and school spaces (Stearle & Kalani, 2015).

Involve Stakeholders in Co-Design

The second design principle is to structure partnerships so that multiple stakeholder groups can co-design initiatives to promote learning across settings. Co-design in education is a highly facilitated process that engages people who have diverse expertise in designing, developing, and testing educational innovations (Penuel, Roschelle, & Shechtman, 2007). In structuring partnerships to support equity, leaders must consider not only which stakeholder groups need to be involved, but also the history of these groups. Inequities can be perpetuated when designers presume that everyone can and will participate equally despite a history of disenfranchisement of people from nondominant communities.

A collaborative effort led by Megan Bang and colleagues (Bang, Medin, Washinawatok, & Chapman, 2010) with the Menominee people in rural Wisconsin and with Native people living in Chicago illustrates this intentional approach to co-design that addresses historical inequities. This partnership aimed to increase the science achievement of Native American students and their representation in science-related professions while deepening students’ “community-based ways of knowing,” which reflect indigeneous scientific epistemologies (Bang & Medin, 2010). The Menominee people from rural Wisconsin and Chicago explicitly decided to work with educators and community members and to address their interests as “community science experts” (Calabrese Barton & Tan, 2010). In this project, the educators and community members served as “community science experts” who were involved in the research and development process, which was integral to the design of learning across settings and the successful youth outcomes the researchers documented (Bang & Medin, 2010). Promoting equitable cross-setting learning should not be the job of just one person or organization. Partners working across settings need to make sure many voices are involved.

Make Connections Across Settings

The third design principle for equitable STEM learning suggests that afterschool programs engage young people in building stories, imaginative worlds, and artifacts that make connections and have meaning across learning settings. Our literature review uncovered several afterschool programs that have engaged participants in co-constructing narratives that have significance in multiple settings. Transmedia storytelling (Jenkins, 2010) is a design approach for creating a single story that audiences or learners can experience across different media. It typically involves building an imagined world in which plots unfold across various media as characters not only identify with characters but also add to the narrative itself. Participants can shape the story by adapting it in their own creative writing, as is common in fan fiction (Chandler, O’Scott, & Mabar, 2003).

Transmedia storytelling is increasingly common in the entertainment sector. In recent years, educational broadcasters have begun to sell transmedia storytelling to design cross-setting interventions for children. An example is a set of interventions to promote low-income children’s mathematics and science learning (Pastuk & Llorente, 2011; Penuel et al., 2010). The preschool-based interventions used public television programs targeting four- and five-year-olds, offering guided viewing of programs, game play, and hands-on activities to promote specific learning goals in mathematics and science. Because the programs appeared on broadcast television and the interventions included resources for parents, families could extend their children’s learning at home. More parents in the intervention group reported that their children talked with them about ideas in the science curriculum than did parents of children who were not part of the intervention group (Penuel et al., 2010).

Name Youth as Contributors

The fourth design principle for cross-setting STEM learning is to help youth identify with the learning enterprise by supporting and naming them as contributors to authentic endeavors. Learning always involves becoming a certain kind of person, that is, developing an identity. Identity development involves appropriating, or “making one’s own,” the tools and practices of a discipline (Hand & Grosz, 2015). Young people who identify as science learners are more likely to access science learning and to persist and succeed in it. However, historically, participation in STEM programs is exclusive of women and members of particular racial groups, including Latinx, African Americans, and Native Americans. Intentionally developing positive science learning identities is critical for expanding equity in science education.

Designing for identity development requires giving young people opportunities to contribute to authentic endeavors and to have their contributions recognized. In authentic endeavors, young people have a say in the purposes of the learning activities in one setting, an experience that prepares them for action in another setting.

Inequities can be perpetuated when designers presume that everyone can and will participate equally despite a history of disenfranchisement of people from nondominant communities.

Designing for identity development requires giving young people opportunities to contribute to authentic endeavors and to have their contributions recognized. In authentic endeavors, young people have a say in the purposes of the learning activities in one setting, an experience that prepares them for action in another setting.

A good example of designing for identity development is Green Energy Technologies in the City (GET City) at the Boys & Girls Club in a Midwestern city (Calabrese Barton & Tan, 2010). The program serves primarily middle-school-aged youth from nondominant communities. As in many other science programs or outside schools, youth learn how to engage in key science practices, such as planning and conducting investigations, analyzing and interpreting data, and communicating scientific information. Unlike many other science programs, however, GET City gives youth a considerable say in the activities: Adult staff regularly enlist them to co-plan activities and then adjust course when youth propose changes. At the insistence of the youth themselves, their investigations brought them into the community, where they conducted street interviews about residents’ experiences of urban heat islands. The youth also presented the results of their investigations to city officials. As Calabrese Barton and Tan (2010) document, a number of GET City participants have appropriated identities as “community science experts” (p. 21), that is, as persons who are capable of science and can provide evidence related to culturally relevant environmental concerns in their communities.

Intentionally Broker Learning Across Settings

The fifth design principle is to intentionally broker youth learning across settings, preparing both educators and family members to be brokers. Brokering refers to helping people move from one setting into another that might otherwise be inaccessible (Ching, Santo, Hoadley, & Peppler, 2015). Brokering can be a means of helping youth take advantage of opportunities—internships, summer camps, and advanced coursework, for example (Duncan & Murnane, 2010). Brokering can be an effective way for youth to have their contributions recognized. In authentic endeavors, young people also have a say in the purposes of the learning activities in one setting, an experience that prepares them for action in another setting.
tics, brokering is sometimes called “boundary span-
ing” (Tushman, 1977). Effective brokering expands not “know how” but “know who”—knowing which people or groups can provide personal or social support or have knowledge, skills, or resources to share (Wellman & Frank, 2001).

Having a broker can be important to getting a job in a STEM field. Brokers help young people navigate educa-
tional requirements, bureaucratic procedures, and implicit expectations regarding successful career pathways (Stevens, O’Connor, Garrison, Jocuris, & Amos, 2008). In addition to “know who,” brokering requires “know where”—knowing networks of people and places where learners can pursue deeper learning, whether in formal educa-
tional settings, work, play, or civic institutions.

Programs like the Lang Science Program at the American Museum of Natural History, which helps to broker access to STEM fields for underrepresented groups, are purposeful about building networks and institutional links among middle and high school, community colleges, and four-year schools (Adams et al., 2014). Lang participants commit to seven years of work at the museum, and most have opportunities to engage in ongoing research in fields such as zoology, genetics, paleontology, and astrophysics. The program is an intentional effort to support youths’ long-term engage-
ment by developing initial interests in STEM, fostering STEM-linked identities, brokering access to high school and college opportunities, and ultimately supporting pursuit of STEM careers. The Lang program team engaged in a retrospective analysis (Adams et al., 2014) to understand how long-term participation in such programs need to build supporting infrastructures that can connect organizations and communities (National Research Council, 2013). Supporting infra-
structures are ensembles’ material resources and processes that are critical to the functioning of any learning ecosystem; they must be built and maintained over time.

Focusing on infrastructures is critical to diagnosing inequity and promoting equity (Hall & Jurov, 2015). By making visible the infrastructures that enable many economically advantaged youth to pursue coherent STEM learning opportunities, we can see what must be put into place to provide such opportunities to youth from underresourced communities. Most infrastructures are largely invisible; it takes deep investigation to expose the work infrastructures do, let alone to redesign them. Yet this redesign is a core task of systems change. The design principles outlined above require new infrastruc-
tures to support equitable learning across settings.

Adapting Material Resources

One reason advantaged youth can pursue varied STEM
interests is that they lose access to material resources and processes that are critical to their learning (Johnson, 2012). They are also more likely to have parents who can afford to pay for extracurricular programs, which lower-income families cannot (Duncan & Murnane, 2011). Most of the initiatives described above were funded by grants and therefore were accessible to low-income participants because participation was free.

Resources are needed to support both programs and families. Very little grant funding supports scaling and sustaining programs. Unstable funding for informal orga-
nizations may limit their ability to plan, staff, and sustain innovations. Further, research suggests that one reason young people from lower-income families suspend or lose pursuit of STEM interests is that they lose access to mate-
rial resources, such as transportation or computers, that support their participation (Van Horne, Van Steenis, Fensel, & DiGaetano, in press). Promoting equity means providing funding to sustain programs and to lower or eliminate the costs of participation for low-income youth. One solution is to ensure states and other entities provide base funding for equity-focused STEM initiatives.

Support for Parents

Middle- and upper-income parents often play a wide variety of roles in supporting their children’s learn-
ing, including brokering access to OST opportunities. Beyond brokering, parents can play many different roles in supporting their chil-
dren’s learning. From the basics of learning, from collaborator to teacher to co-
learner (Barron, Martin, Takeuchi, & Fithian, 2009). Lower-income parents may need support to learn how to take on these roles. Designing opportunities for parents to participate with their children in STEM learning activi-
ties holds promise as a means of expanding parents’ repertoire for supporting their children’s learning (Roque, Lin, & Luzzi, in press). Additionally, intentional efforts to raise parent awareness of learning opportunities that can allow their children to persist in STEM activities may be a crucial part of a robust learning ecology.

Strong Ties Among Organizations

Strong social relationships and links among organiza-
tions in neighborhoods are important for educational attainment in schools (Johnson, 2012). They are also important resources for brokering access to opportuni-
ties. For example, the program that brokers young people’s access to new STEM learning opportunities, adults need to know about the opportunities (Ching et al., 2013). Adult lead-
ers’ own community ties to other adults with relevant expertise are important sources of such information.

One of the greatest challenges of STEM equity is lack of access to OST opportunities that would allow youth to discover or deepen their STEM interests. One reason is that neighborhoods vary in the abundance and diversity of youth programs they offer (Keeke, Russell, & Crowder, 2010).

The Chicago City of Learning is a citywide partnership in which more than 170 organizations engage young people in roughly 4,000 OST activities, many of which involve STEAM (STEM and arts) learning. The program’s website enables youth and their families to identify activi-
ties based on their interests. The website is also used to recognizing youths’ accomplishments in OST programs, recording digital badges such as Science Research, Robot Instructions, and Peer Mentor. Researchers have used the site’s data to map the locations of STEAM programs and to identify neighbor-
hoods where more opportunities are needed (Pinkard et al., 2016). This research builds on smaller-scale studies that underscore the trans-
portation challenges low-income youth face in accessing OST learn-
ing opportunities (Chin & Phillips, 2009). The partnership is using the researchers’ maps to explore where to expand opportunities for youth.

Partnerships and Coalitions

Long-term partnerships among organizations in a community and coalitions that advocate for access to educational opportunities can be an important part of a supporting infrastructure for equitable learning opportu-
nities across settings. The Hive Learning Networks, active in several cities including New York and Pittsburgh, are an example of partnerships among youth organiza-
tions that develop, implement, and sustain intervention programs (Larson et al., 2014). At Hive meetings, organizations share strategies and engage in joint design work to build new pathways for youth. Community-
wide partnerships can facilitate young people’s access to learning opportunities. Partnerships among organiza-
tions collaborate, they can design pathways for develop-
ing deeper and deeper expertise in an area (Falk et al., 2016). Coalitions and advocacy organizations can also build a broad base of support for expanding opportuni-
ties for youth (Renée, Welner, & Oakes, 2009).
Designing Learning Opportunities and Building Support Infrastructures

The examples in this paper illustrate the possibilities for designing equitable STEM learning opportunities across settings. They elaborate on a vision presented in the 2013 National Research Council report, which calls for building resilient STEM learning ecosystems where youth can access many learning opportunities that are coherent and build on one another. The components of a supporting infrastructure constitute the conditions for building such ecosystems at the scale of a neighborhood or city. That such supports exist in some areas already provides hope that an ecosystem approach can expand opportunity for youth from underresourced communities.

Our framework articulates broad design principles. Developers of cross-setting initiatives will need to elaborate on these principles to address the specific needs in their communities. Taking into account home and community values and practices when identifying learning goals, structuring partnerships to co-design learning opportunities with nondominant communities, and engaging youth in storytelling to facilitate meaning-making all serve as ways to engage youth from underrepresented groups in STEM learning across settings. Similarly, programs must purposefully identify youth as contributors to the scientific enterprise and must intentionally broker youths’ access to opportunities.

In addition, the supporting infrastructures described above must be considered when designing for cross-setting learning. Funders must address the lack of resources to scale and sustain programs in order to reduce barriers to youths’ access to STEM learning. Lower-income families need support to better foster their children’s learning. Adults need help to identify and connect youth with expertise in the community; similarly, they need better access to information about OST learning opportunities. Partnerships that bring together community organizations to develop equity-focused educational initiatives can increase cross-setting STEM opportunities for youth.

Applying these design principles to promote equity and building supporting infrastructures to link youth to new opportunities will help to expand STEM learning opportunities for all youth.

References
Getting the Right Fit: Designing a Professional Learning Community for Out-of-School Time

Femi Vance, Emily Salvaterra, Jocelyn Atkins Michelsen, and Corey Newhouse

A skilled workforce is critical in high-quality out-of-school time (OST) programs (Smith, Devaney, Avkiv & Sugar, 2009). However, the workshops commonly used to train OST staff are not adequately preparing practitioners to deliver quality programs that can benefit youth (Durlak & Weissberg, 2007; Smith et al, 2009).

This issue is evident from ongoing discussions about how to train OST staff to respond to youths’ developmental needs while creating a learning environment distinct from school (Bouffard & Little, 2004; Bowie & Bronste-Tinkew, 2006). Professional learning communities (PLCs) are a practice-focused alternative that has a track record of improving the way staff work with youth (Thompson, Gregg, & Niska, 2004; Vescio, Ross, & Adams, 2008).

PLCs, though relatively new in OST, are growing in popularity. For instance, the Weikart Center for Youth Program Quality encourages programs to create PLCs for continuous quality improvement (Smith et al., 1997).


The founder of a research and training organization specializes in multiple workshops to address a shared goal of OST leaders as prominent facilitators. We interviewed six PLC facilitators revealed best practices for designing a PLC for OST staff. Interviewees work with OST providers, have many years of experience facilitating or coordinating PLCs, and have been recognized by OST leaders as prominent facilitators. We interviewed:

**PLC Structure**
- What is the typical structure of the PLC that you facilitate?
- How do you see PLCs differing from other professional development models that you are familiar with?

**Benefits of PLCs**
- What components of a PLC do you find particularly successful?
- How have you seen programs benefit from having staff in PLCs?

**Supports for Successful PLC Experience**
- What organizational supports do you think staff need to implement what they learn in their programs?
- What recommendations would you offer to a program that is interested in leveraging its staff's PLC participation to make program-wide changes?

Public Profit practice guides on PLCs are available at http://www.publicprofit.net/Professional-Learning-Communities-In-The-Expanded-Learning-Field.
Design Features of OST Professional Learning Communities

The experts we interviewed identified three essential PLC components and five additional features that can be modified according to participants’ needs and the PLCs’ goals.

**Essential Components of a PLC**

The first step in designing an effective PLC is to understand the model. In interviews, expert PLC facilitators defined three essential elements of any PLC: experience, practice, reflection, and collaboration (Figure 1). Prior research indicates that these three components are deeply connected to the iterative learning cycle of a PLC: critical interrogation of youth work practices, applying new lessons, and reflection on how practices are developing (Stoll, Bolam, McMahon, Wallace, & Thomas, 2006).

**Practice**

McKenzie (2014) includes practice and risk-taking opportunities in a collegial climate as a defining feature of PLCs. One interviewee noted that practicing during PLC sessions helps participants “build their confidence and their knowledge.” Because many adults learn by doing, practicing may help knowledge take hold. According to our experts, participants also learn from modeling that occurs during PLC sessions. For example, after watching the facilitator model an activity, participants may take turns facilitating the activity for their peers. They thus learn both content, such as science knowledge, and skills, such as facilitation techniques.

**Reflection**

Fusco (2012) asserts that reflection is one instructional skill, such as facilitation techniques. In interviews, they stressed that sharing challenges and best practices is one of the biggest benefits. In well-facilitated PLCs, participants have the opportunity to “collaborate and network with others, build consensus, problem solve … [and] gain access to resources broadly defined and vis-à-vis the relationships they have developed.” Collaboration may take place in a structured conversation such as a “think, pair, share” activity, or it can be a more informal opportunity to connect with peers, such as sharing challenges and best practices during a PLC discussion. Interviewees said that PLCs can also build participants’ confidence and self-efficacy. Through collaboration, participants can learn from their peers and build the collegial relationships required by a successful PLC (Lieberman & Miller, 2011).

**Collaboration**

When asked to evaluate the strengths of PLCs as compared to other professional development modes, interviewees noted that sharing challenges and best practices is one of the biggest benefits. In well-facilitated PLCs, participants have the opportunity to “collaborate and network with others, build consensus, problem solve … [and] gain access to resources broadly defined and vis-à-vis the relationships they have developed.” Collaboration may take place in a structured conversation such as a “think, pair, share” activity, or it can be a more informal opportunity to connect with peers, such as sharing challenges and best practices during a PLC discussion. Interviewees said that PLCs can also build participants’ confidence and self-efficacy. Through collaboration, participants can learn from their peers and build the collegial relationships required by a successful PLC (Lieberman & Miller, 2011).

**Figure 1. Essential PLC Components**

<table>
<thead>
<tr>
<th>Practice</th>
<th>Reflection</th>
<th>Collaboration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opportunities to</td>
<td>Opportunities to</td>
<td>Opportunities to</td>
</tr>
<tr>
<td>learn by doing;</td>
<td>think critically and</td>
<td>learn, problem</td>
</tr>
<tr>
<td>trying skills in</td>
<td>share successes,</td>
<td>solve, and network</td>
</tr>
<tr>
<td>front of peers</td>
<td>challenges,</td>
<td>with peers in the</td>
</tr>
<tr>
<td>and coaches</td>
<td>questions,</td>
<td>field</td>
</tr>
</tbody>
</table>

**Figure 2. Modifiable PLC Components**

<table>
<thead>
<tr>
<th>Participant Type</th>
<th>Curriculum</th>
<th>Co-Leadership</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selecting who will participate, and at what organizational level, to respond to PLC goals</td>
<td>Organizing sessions either around structured curricula or around knowledge sharing and collective problem solving</td>
<td>Deciding to what extent participants will help define PLC goals, collaborate on content, and co-facilitate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coaching</th>
<th>Organizational Supports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Including or excluding coaching as a part of the menu of services offered by a given PLC</td>
<td>At the agency level, offering dedicated program space, internal knowledge-sharing routines, or other supports</td>
</tr>
</tbody>
</table>

**Modifiable Components of a PLC**

In addition to the three critical components, interviewees identified five PLC features that can be modified to match the needs of an organization: participant type, curriculum, co-leadership, coaching, and organizational support. Figure 2 outlines these five modifiable features. Table 2 is a PLC decision guide. Starting from the goals of the PLC, it outlines recommendations for incorporating the modifiable components. The discussion of each component below begins with the experts’ broad observations and concludes with practical advice.

**Participant Type**

One consideration in planning a PLC is who will participate. Facilitators recommended choosing participants based on the PLCs’ desired goals. They noted that the organizational roles of PLC participants will affect how sessions are structured and what the group can accomplish, as shown in Table 2.

A recent white paper on OST PLCs indicates that, when PLCs are focused on improving access to and the quality of content-specific enrichment activities (such as STEM or gardening), participants are most likely to be OST staff with youth-facing roles (Public Profit, 2015). The goals are accomplished by having front-line staff learn to implement a curriculum, by providing training on facilitation methods, and by offering site-level supports such as coaching. Interviewees noted that, in this type of PLC, site supervisors may support participating front-line staff through, for example, activity observations and coaching, but that the PLCs focus on instruction does not generally make it a good fit for program leaders. One respondent observed that, even when program leaders don’t participate in the PLC, “there’s a need for someone at the leadership level to provide ongoing coaching … that reinforces what’s happening at the learning community.” To provide this kind of support, site supervisors should be aware of the content covered in the PLC.

Interviewees noted that PLCs for higher-level staff have different goals and therefore different structures. PLCs for site supervisors and other administrators center on innovative approaches to organizational and systemic improvements. Typically, administrators from various organizations attend a series of discussion-based meetings and exchange ideas through resource sharing, newsletters, topic briefs, and similar means (Public Profit, 2013). However, interviewees did describe benefits to blending participant types. As one seasoned facilitator put it, “In my view, in expanded learning, it’s really important to have both program-level and site-level administrators or leaders in the room because they offer very different perspectives.” Bringing together voices that represent different facets of the same goal can be a powerful way to enhance the learning experience for all participants.
Table 2. Decision Guide for Modifiable PLC Features

<table>
<thead>
<tr>
<th>GOAL</th>
<th>PARTICIPANT TYPE</th>
<th>CURRICULUM</th>
<th>CO-LEADERSHIP</th>
<th>COACHING</th>
<th>ORGANIZATIONAL SUPPORTS</th>
</tr>
</thead>
</table>
| To improve access to and quality of content-specific activities for youth | Front-line staff          | • If primarily less experienced front-line staff, yes | With structured, scaffolded experience, could develop into co-leadership model | Coached by facilitator and by site supervisor, including on-site opportunities | Receive organizational supports:  
  • Paid time to plan and attend meetings  
  • A list of approved content areas  
  • Strong program structure  
  • Vision for how new skills align with program goals  
  • Elective participation  
  • All needed materials |
| To develop site-level support for knowledge transfer, coaching, and reinforcement with front-line staff | Site supervisors | No | Yes | Could incorporate peer coaching, including on-site opportunities | Receive organizational supports:  
  • Paid time to plan and attend meetings  
  • Strong program structure  
  • Vision for how new skills align with program goals  
  • Elective participation  
  • All needed materials |
| To build frameworks for advocacy, networking, or growing the legitimacy of the OST field | Program administrators or other managers or directors | No | Yes | | Receive organizational supports:  
  • Paid time to plan and attend meetings  
  • Strong program structure development  
  • Vision for how new skills align with program goals  
  • Elective participation  
  • All needed materials |
| To build multi-level buy-in, collaborative problem solving, resource sharing, or leadership development pathways | A blend of all participant types | No | Yes | Site supervisors coach front-line staff | Depending on role, participants receive and provide supports:  
  • Paid time to plan and attend meetings  
  • A list of approved content areas  
  • Strong program structure  
  • Vision for how new skills align with goals  
  • Elective participation  
  • All needed materials |
tool for collaboration on best practices, problem solving, and resource sharing (McLaughlin & Talbert, 2010). Interviewees also noted that participation by both groups can signal that an agency is deeply invested in staff development, perhaps spurring even greater change. Nonetheless, blending PLC participant types may make PLC logistics more challenging, for instance, it may complicate finding the right schedule, structure, or frequency of meetings.

The responses of our experts suggest that, to determine the appropriate participants, facilitators can plan backward from the PLC’s goals: What is the ultimate purpose of the PLC? At what level—youth, staff, supervisors, or system—does the focal issue have the most immediate or greatest impact? The answers to these questions will help determine who should participate. For example, if the goal of a PLC is to improve science enrichment quality, then the level of impact is youth; consequently, the best group to tackle this issue is staff who work directly with young people. If the goal is to expand the reach of science enrichment activities in a youth-serving organization, then a PLC for front-line staff may be most appropriate. For participants entering the PLC with little or no content experience, facilitators may be ready for some level of co-leadership. As one interviewee recounted, such participants may reflect on challenges and success in addressing common issues in planning, implementation, or coordination, such as aligning content to socio-emotional learning activities or eliciting buy-in from school teachers. As one interviewee recounted, such PLCs focus on “coming together to dialogue and reflect on our practice as consultants and trainers and coaches. We’re not necessarily really teaching content.”

The experts said that a curriculum is rarely necessary when PLC goals emphasize knowledge sharing, collective problem solving, or eliciting buy-in, and maybe demonstrating one or two activities or bringing a video from the field... People get tools that they get to go back and replicate on their own.

The experts said that a curriculum is rarely necessary when PLC goals emphasize knowledge sharing, collective problem solving, and replicating on their own. Co-leadership is thus integral to PLC design. Interviewees asserted that the extent to which participants are involved in shaping the PLC agenda depends on participants’ experience in the field. A school district facilitator, for example, said that the district refers to its model simply as “learning communities” as a way to make sure that participants do not play a significant leadership role. This respondent said that this level of involvement is a good fit for inexperienced front-line staff.

“PLCs ensure that learning is meaningful and relevant when people are constructing it based on their own needs,” one expert noted.

Co-Leadership
Traditionally, PLCs for school educators use a model in which participants co-lead or are actively involved in shaping the community. From goal setting to facilitating sessions (McLaughlin & Talbert, 2010). Research suggests that youth workers also benefit from non-hierarchical, flexible, participatory training methods such as co-leadership ( Fusco, 2012). When asked about the importance of participant involvement in early decisions making, some of the interviewees agreed that active participant involvement is critical to a PLC’s success—but they said that time is needed to build participants’ capacity to engage in a highly collaborative environment, and maybe demonstrating one or two activities or bringing a video from the field. People get tools that they get to go back and replicate on their own.

The potential of capacity of potential participants, in including their level of content expertise, prior youth development experience, and available time outside of PLC sessions to learn and practice, should be taken into account. For participants entering the PLC with little or no content expertise or with little youth development experience, using a curriculum can help to structure learning and practice. However, for more experienced front-line staff, strict adherence to a curriculum may not be as useful because they generally have greater expertise to explore content in a less structured way than do newer front-line staff. They may be ready for some level of co-leadership.

GETTING THE RIGHT FIT
Without sufficient materials, PLCs are less likely to thrive. Our interviewees said that organizations looking to implement PLCs must first create the conditions that front-line OST staff need to practice and share their new skills. Too often, they said, front-line staff return to organizations that are not structured to provide the supports that will help them implement new practices or share insights with colleagues. One expert expressed the need for organizational support in this way: “All the changes that really occur in programs have to happen at the site level. Ultimately, whether it works or doesn’t work, the litmus test is what’s changing at the site level.”

The experts we interviewed suggested that organizational supports and established routines are critical to PLC participants’ success. Site supervisors must: facilitate PLCs; provide increased support; and hold basic coaching conversations.” said a site supervisor who is both invested and supportive and checking in with site supervisors regularly. Site supervisors can coordinate the recurring supports and arrange time for knowledge sharing, as assessment is coaching as context for understanding PLCs. Asked about essential elements to PLCs, experts suggested that organizations must: provide key organizational supports; and advocate, on participants’ behalf, for necessary organizational supports. A few interviewees noted that funding constraints are often a barrier to providing coaching from experts such as the PLC facilitator. In that case, interviewees suggested, site supervisors may want to consider how to: “All the changes that really occur in programs have to happen at the site level. Ultimately, whether it works or doesn’t work, the litmus test is what’s changing at the site level.”

**Organizational Supports**

The authors of the study identified three key elements of a PLC that are critical to PLC success. The expert facilitators we interviewed noted three key elements of a PLC that should be structured in particular ways to reap the biggest benefits for OST staff: opportunities to apply new skills, collaborative work, and guided reflection. Other PLC elements can—and should, according to our experts—be adapted to participant’s abilities and needs and to the goals of the PLC. These include the type of participants, curricular, co-leadership, coaching, and organizational supports. The decisions made on these features may influence other elements. For example, coaching may contribute to participants’ increased ability to co-lead a PLC, or the participant type may influence whether to use a curriculum.

This study examined factors that affect PLCs in the OST field. The expert facilitators we interviewed found three key elements of a PLC that are critical to the success of PLCs: a choice in the PLC process, a vision for how new skills align with program content, and the supports available to staff. Similarly, PLC applications can clearly define how much time supervisors must invest to stay familiar with PLC content. The promise of PLC learning is more likely to be fulfilled with key organizational supports, a supportive site supervisor, and careful facilitator planning. The facilitator of a STEM-focused PLC described the changes she’s seen accomplished through the PLC: “The quality just skyrockets, in my view. In the last year, I’ve seen real transformations in 25 to 30 programs, in terms of staff retention, program quality—anyway you want to implement this work.”

When planning a PLC, facilitators may want to consider how to: “All the changes that really occur in programs have to happen at the site level. Ultimately, whether it works or doesn’t work, the litmus test is what’s changing at the site level.”

**High-Impact PLCs for OST Providers**

Prior research demonstrates that PLCs are practice-oriented, collaborative, content-rich, and iterative in that they rely on a learning cycle of questioning, learning by doing, and reflection (DuFour, 2004; Stoll et al., 2006). PLCs for OST youth workers can offer a multi-faceted professional development experience to support the multi-faceted layers of their work.

Purposeful planning can contribute to the success of PLCs in the OST field. The expert PLC facilitators we interviewed noted three key elements of a PLC that should be structured in particular ways to reap the biggest benefits for OST staff: opportunities to apply new skills, collaborative work, and guided reflection. Other PLC elements can—and should, according to our experts—be adapted to participant’s abilities and needs and to the goals of the PLC. These include the type of participants, curricular, co-leadership, coaching, and organizational supports. The decisions made on these features may influence other elements. For example, coaching may contribute to participants’ increased ability to co-lead a PLC, or the participant type may influence whether to use a curriculum.

This study examined factors that affect PLCs in the OST field. The expert facilitators we interviewed found three key elements of a PLC that are critical to the success of PLCs: a choice in the PLC process, a vision for how new skills align with program content, and the supports available to staff. Similarly, PLC applications can clearly define how much time supervisors must invest to stay familiar with PLC content. The promise of PLC learning is more likely to be fulfilled with key organizational supports, a supportive site supervisor, and careful facilitator planning. The facilitator of a STEM-focused PLC described the changes she’s seen accomplished through the PLC: “The quality just skyrockets, in my view. In the last year, I’ve seen real transformations in 25 to 30 programs, in terms of staff retention, program quality—anyway you want to implement this work.”

When planning a PLC, facilitators may want to consider how to: “All the changes that really occur in programs have to happen at the site level. Ultimately, whether it works or doesn’t work, the litmus test is what’s changing at the site level.”

**References**


Acknowledgment

The authors would like to thank the S. D. Bechtel Jr. Foundation for its generous support of professional learning communities in California. The foundation’s dedication to improving professional development opportunities for OST program staff has made this article possible.
According to the Harvard Family Research Project (2010), schools need collaborative partners to help children and youth thrive. For over a decade, afterschool programs have been positioning themselves as viable partners. After all, afterschool programs challenge students’ thinking, teach collaboration, and help children and youth find their passion.

Furthermore, in 2008, 56 percent of afterschool programs were located in school buildings (Parasd & Lewis, 2009). Intentionally designed school-afterschool partnerships can have positive academic results (Bennett, 2015), increase social skills (Duralk & Weissberg, 2007), and improve attendance (Chang & Jordon, 2013). Addressing these factors could help our educational system close the achievement gap between low-income students and their more affluent peers. The depth of partnerships between afterschool programs and schools has been shown to improve student academic outcomes (Bennett, 2015). However, school-afterschool partnerships are more often promoted (and included in grant proposals) than fully realized. Current partnerships are often limited to daily attendance and behavior reports. School leaders accept that afterschool programming is important, even...
as they discount its worth by treating it as entirely separa-
tate from the school. Meanwhile, afterschool program
leaders may be pulled from full partnerships with schools
because of the immediacy of program needs, among other
reasons. Educators on both sides are missing oppor-
tunities to go deeper, to improve student achieve-
ment by connecting students to afterschool experiences
that complement their learning during the school day.

To identify what stands between schools and after-
school programs and what can connect them, the lead
author, Ken Anthony, conducted an exploratory study
in three schools in a southern New England city. In all, 18
interviews were conducted with school and afterschool
staff. Following a framework proposed by Bennett (2015),
this exploratory study focused on three specific aspects
of school-afterschool relationships: sharing of academic resources, sense of partnership, and communication
structures. Together, Ken and co-author Joseph Morra
developed recommendations for the field based on
the findings of this limited, small-scale study. We aim not to
provide definitive conclusions but to enter a conver-
sation about how schools and afterschool programs relate to each other. Our status as afterschool prac-
titioners, though it could be seen as a source of bias, gives us a realistic
perspective on what happens "on the ground" in school-afterschool
partnerships. Perhaps our most salient finding was a disconnect between
school and afterschool staff. However, school and afterschool staff
described informal structures and opportu-
nities that could contribute to more substantial connections.

The School of State-Afterschool Relationships

Substantial research has shown that, in order for com-
munities to reap the academic and social benefits of af-
Project (2010) asserts that “in-school and non-school supportive should collaborate as equal partners to work
ward a shared vision for children’s learning” (p. 2).

School leaders would seem to agree. In a nationwide
survey (Daniels, 2012), 82 percent of school superinten-
dents said that afterschool programs are important, citing
the social-emotional and academic benefits, 75 percent
reported that they encouraged principals to work with
(facility-based organizations to offer stronger after-
school programs.)

However, developing partnerships between schools
and community-based organizations takes time and ef-
f fort (Wallace Foundation, 2010). The perceived differ-
ence between youth development and formal educa-
tional approaches can impede conversations. Roni and
Schmida (2007) attest that the two philosophies are in-
extricably linked; with good communication, practition-
ers of both can share their craft and art. Both partners
need to be thoughtful about the pro-
cess, designing and building the system together and adjusting the relationship to keep it sustainable. This common vision begins with
"identifying and recruiting stake-
holders from multiple background representing all aspects of a child's life " (Anderson-Butcher et al., 2008,
p. 160). Our work is based on a frame-
work proposed by Tom Bennett (2015), which in turn builds on two studies by Gil Noam and colleagues.
The first of these (Noam, Buncarosa, & Dechaseux,
2003) defined a bridging continuum of school-community
partnerships, from self-contained programs, which make
little attempt to collaborate with schools, through associ-
ated, coordinated, integrated, and finally unified programs. The last represents a seamless learning day, with little differentia-
tion between the school and afterschool
environment (Noam et al, 2003). The second study
(Noam et al., 2004) identified “four Cs” of successful af-
terschool programming: collaboration, communication, content, and coherence.

Bennett (2015) refined these structures into a frame-
work measuring alignment between schools and afterschool
partners. The framework has three key areas: sharing of academic resources, sense of partnership, and
communication. Bennett surveyed school principals and
afterschool staff in 78 schools in 11 southern California
districts about the extent to which they perceived align-
ment between the school and afterschool program, de-
fining alignment as “specific collaboration practices be-
tween afterschool programs and schools that attempt to
coordinate student learning as they transition from the
regular school day to the afterschool program” (p. 1).
She defined sites in which both school and afterschool leaders
had high levels of agreement on all three scales as “highly aligned,” and sites where school and afterschool leaders
showed substantial disagreement as “misaligned.” Bennett then examined more than 8,000 student stan-
dardized test scores to find that stu-
dents at highly aligned sites
performed better than did students at
misaligned sites. Perhaps our most salient finding was a disconnect between
school and afterschool staff. However, school and afterschool staff
described informal structures and opportu-
nities that could contribute to more substantial connections.
The code **disconnection** was particularly salient; it appeared in all 18 interviews. All three afterschool directors emphasized this **disconnection**. The Site B director said, for example, “I think half of the time, some principals don’t even know what some afterschool programs … provide.”

The principal at Site C seemed to agree that regular meetings could improve communication, seeing such meetings as a way to bring grade-level teams together to create targeted interventions that could bridge the school and afterschool environments. In terms of communication systems, the Site B principal suggested a streamlined system that would target student needs, such as a check sheet or other method of informal communication, suggesting that otherwise afterschool staff might inundate teachers. The afterschool director at this site suggested that email would be an efficient method of communication “if we had even just the email list provided by the school director, who are their teachers are.” No consensus emerged about modes of communication, nor was there evidence that any of these suggestions would be followed through.

**School Administrative Support for the Afterschool Program**

The theme of school support for the afterschool program includes such codes as administrative-level communication and depth of principal involvement. The relatively large number of responses related to administrative communications and follow-up suggest that communication about such day-to-day concerns as homework assignments did take place at the study sites. The afterschool director at Site B reported, “Our staff gets the attendance from the day to ensure that we get the proper kids for the afternoon that were in school.” Evidence of deeper communication beyond purely administrative tasks was rarer. Four afterschool and one school respondent talked about the importance of shared academic goal setting. However, they did not indicate that such sharing actually took place at their sites. The afterschool directors at all three sites said that they had initial meetings with their school principals at the beginning of the year. The principal at Site B noted that she had little communication with the afterschool program, “other than behavior concerns of that type of thing.” However, she reported that she had regular contact with a school-afterschool liaison whose position was funded by the state. The afterschool director at this site, by contrast, did not mention the liaison. She indicated that she met with the principal as needed but described a substantial connection with the school secretary on logistical issues.

The afterschool front-line staff seemed to perceive an informal and generally collaborative relationship between the program and school administration. The Site B staff member said, “We always tell us that if there’s any issues—anything we need whatsoever—don’t hesitate to contact them. If I am at the school and I run into the vice principal and whoever, they’re always asking how things are going. They’re very concerned.

The afterschool staff member at Site A had a similar assessment: “The assistant principal pops in once in a while. She’ll … say ‘Hi’ to the kids and see how everything is going.”

The principal at Site B described how the school helped to bring children into afterschool programs by asking teachers to identify students who could benefit. She also described her lack of involvement in the community-based program, saying that she got involved only in “logistics” such as busing and parent pick-ups. The principal at Site C was disappointed in a lack of communication about student recruitment: “I didn’t have a whole lot of say on how they were inviting kids to participate, and that was a problem.”

This principal said that the letter sent by the afterschool program to parents about the child’s status in the program was misleading. She concluded, “I think that next year I would like to look over what they write.” She wanted to work with teachers to recruit children who could benefit most into the afterschool program.

According to Newmann, King, and Youngs (2000), the creators of partnerships outside of the school is the responsibility of the school principal. A hands-off approach on the part of school principals does not set a tone of collaboration between school and afterschool staff.

**Informal Structures and Opportunities**

The theme of informal structures and opportunities included interview responses that were coded into such categories as homework and informal relationships, among others. Nearly all afterschool staff members described having informal connections with the school teachers. The afterschool director at Site B described a typical situation:

If there is something that’s going on with the child, and he or she doesn’t understand homework or forgot their homework in the classroom, our staff takes the kids to the teacher. They go and ask for help, ask for clarification, or go get the homework … so they’re always visiting with the school-day teacher.

Some afterschool staff said that they ascertained what academic content children were studying by looking at their homework. School teachers did not provide links with afterschool staff. However, the principal at Site B said that afterschool staff might “ask questions on how to assist the kids with their homework” or check on children who say they don’t have homework.

Three afterschool staff members described using informal connections to work around lack of information shared about students due to confidentiality rules. The front-line afterschool staff member at Site C said, “If the student comes from a home of abuse or neglect, or is...
an easy on-off switch for having a crisis, we’re not given that information. We’re only given medical info. She then spoke about “having … school staff on site” and knowing school personnel from previous experiences, saying, "I can talk to them.

The idea that these informal connections were reinforced by the fact that afterschool and school staff who worked directly with children were more likely to agree with one another than were the afterschool and school administrators—particularly in this area of informal structures but also in responses to other questions. The reason may be that these front-line staff enjoyed more informal connections than the administrators did. More intentional connections could facilitate deeper communication about student needs.

Program Elements

The theme of program elements includes interview responses coded as curricular components, among others. One of teachers at Site B exemplified teachers’ typical view of afterschool programming as “a good extracurricular activity for the students. It’s more of a relaxed atmosphere…. It’s something that [students are] interested in.” The principal at Site A said that the afterschool programs were “not specifically teaching academic content… Like the martial arts [program], they’re not teaching academic content, they’re teaching the self-discipline piece.” This principal revealed a bias toward academic programming as she contrasted the martial arts program with the literacy program, noting that the staff were “automatically more academically aligned.”

By contrast, the afterschool director at Site A talked about the academic content in her program. “I’m rigorous on spelling quizzes and spelling tests…. They identify what the words are, define them, do riddles, things like that.” The afterschool front-line staff member at Site B spoke of alternating social-emotional supports with academic instruction.

In planning with my colleague, we know that our students need help with blended words; they need help with fluency, they need help with sight words— and then they also need social and emotional awareness. So one day, we teach an intervention in the next day we teach a social-emotional skill.

These afterschool respondents believed that their programs were facilitating important learning, whether the content was strictly academic or also social-emotional. Along those lines, the afterschool director at Site C outlined the substantial credentials of program staff. All of the lead teaching artists have either degrees— in some cases a couple of advanced degrees in theater or in education—or extensive, 10 or 20-plus years of experience working in theater, especially working with children in theater, writing, directing, performing. So I’m working with theater professionals.

The afterschool director’s perception of staff qualifications encompasses the diverse experience afterschool practitioners bring to their work.

Barriers

The theme of barriers included codes for professional development, expectations and qualifications for afterschool staff, and territorialism.

School staff addressed training as an indicator of afterschool program quality. One teacher cited the importance of “how well the personnel is trained and how well they can work with kids.” The principal at Site C and the teacher at Site B both raised issues about how the afterschool staff managed student behavior. The teacher said that “one of the afterschool programs had a bit of difficulty with handling some of the kids, and so they had to bring in … more structured staff.” The principal at Site C seemed to have some respect for the training of the afterschool staff. “The outreach coordinators go through quite a bit of training on how to manage peers of their own age, because, I mean, they are young… But they all go through quite a bit of training.”

Some responses, particularly from afterschool staff, indicated openness to joint professional development; one said, “I think if they maybe had a professional development with us at their school, it would be helpful.” A teacher from Site C said that the “young kids” working in the afterschool programs might want to “look for help” from the school staff. “If they put that out there, I’m sure the people in the building would be more than willing to give them a hand.” A teacher at Site B, by contrast, said, “Even if [afterschool program staff are] trying to communicate with us about what they’re working on or things that they have coming up, I don’t necessarily know if all the teachers would be accepting of it.” The teachers seemed to feel that they had something to offer the afterschool staff but that some teachers might not be willing to accept initiative coming from the afterschool side.

Both school and afterschool staff described issues with sharing space. Territorialism on the part of teachers was cited, for example, by the afterschool staff at Site C, who ran an activity out of the teachers’ lunch room. “Something that was said that maybe we shouldn’t be in there because, if a teacher has to come in and use the telephone, they don’t have the privacy that they wanted.” The afterschool director at Site A spoke of how the expectation was to know exactly where in the school each afterschool activity was taking place at what time. Even the principal at Site C perceived territorialism on the part of her staff. “The sharing of space, classrooms—teachers can be very, very possessive of their materials and the cleanliness of their room, or the organization of their room.” Lack of trust about something as basic as space use does not help to build the relationships needed to align goals and work together to serve children.

Recommendations on Misalignment

Recommendations on School Support

Our second conclusion is that the degree to which school and afterschool personnel perceive that the school supports the afterschool program is affected by the relationships between members of each group and by individuals’ personal experiences.

Being aware of the social fabric of the school can help afterschool programs build more school support. For instance, if the school places a premium on particular values, such as citizenship, spirit, or compassion, afterschool staff can create programming that supports these values.

Another possibility is to request that the principal schedule visits at key points during the afterschool program to take a “learning walk” (Russo, 2006). Such observations can be an opportunity to show the principal how the afterschool program contributes to the academic, social, emotional, and physical growth of students.

Recommendations on Informal Structures and Opportunities

Our findings suggest that, even without formal administrative support, school and afterschool staff develop ad-
Recommendations on Program Elements

Another source of tension between school and afterschool personnel is differing goals: Schools tend to focus on educational attainment while afterschool programs often emphasize personal development. Looking at youth holistically may help to bridge this difference. The skills youth need form a triangle: academic, social-emotional, and essential (21st century) skills. Take away one side, and the triangle is no more.

Admittedly, getting all of the adults who work with a group of children to foster growth in all three areas is easier said than done. One potential strategy is joint professional development. Social-emotional learning may be a key entry point (Moroney & Devaney, 2015). The facilitators of joint professional development should have a foot in each realm; they should be translators who can build community and trust by keeping the idea of youth success at the forefront. Professional learning communities comprising mixed cohorts of school and afterschool staff can ably share learning on such concepts as Common Core, Next Generation Science Standards, and curriculum development. As noted above, professional learning communities including both school and afterschool staff is one exciting strategy. Another is exemplified in the Hasbro Summer Learning Initiative in Rhode Island, which requires planning and implementation teams to incorporate both school and community-based staff in the design of summer programs. Such networks can help to break down barriers and decrease territorialism, if school and afterschool professionals will both reach out to one another. The only way to break down barriers is to intentionally embed collaboration into the way schools and afterschool programs conduct their business.

Recommendations on Barriers

The chief barrier to school-afterschool cooperation that emerged in interviews was school personnel’s perceptions of their afterschool counterparts. Business as usual, with the dynamics of school and afterschool programs confine one another and even overlap—to the benefit of all educators—can influence one another and even professional learning communities. School teachers can ably share learning in educational development training, while their careers take them to schools or to community-based organizations. In our experience, afterschool and school educators have much to offer one another. Afterschool staff can ably teach respect youth voice and social-emotional development, and build community connections. School teachers can ably share learning on such concepts as Common Core, Next Generation Science Standards, and curriculum development. As noted above, professional learning communities including both school and afterschool staff is one exciting strategy. Another is exemplified in the Hasbro Summer Learning Initiative in Rhode Island, which requires planning and implementation teams to incorporate both school and community-based staff in the design of summer programs. Such networks can help to break down barriers and decrease territorialism, if school and afterschool professionals will both reach out to one another. The only way to break down barriers is to intentionally embed collaboration into the way schools and afterschool programs conduct their business.

Limitations

This study had three major limitations. The first is sample size and selection. Findings from interviews with 18 educators from one school district can suggest avenues for action but cannot be generalized. A second limitation is that all information was self-reported and therefore subject to bias. The actual state of the relationship between the school and afterschool programs cannot be verified without observation. The third limitation is researcher bias. Ken Anthony, who conducted the interviews and did the analysis, has been in the afterschool field for 21 years and has shared the experiences of many of the afterschool respondents. The analysis may have amplified the perceptions of the afterschool providers, while discounting the perspectives of the school educators. Given these limitations, this study must be considered exploratory and suggestive only. The findings cannot be generalized but do suggest conclusions and recommendations that are consistent with previous research. Larger studies could explore differences in pedagogy and practice while highlighting communication structures that work to bridge the gaps between school and afterschool personnel.

The Need for Communication

Coordinated systems that bridge in-school and out-of-school learning can support the holistic development of students. This study highlights the opportunities and barriers faced by afterschool programs housed in schools in one community. It highlights steps toward dialogue that can create a shared vision of student learning, particularly around informal relationships, principal leadership, faculty dialogue, and shared professional development. Both school districts and citywide coalitions need to provide the infrastructure that would support ongoing communication and encourage sharing. Conversations between school and afterschool partners need to be founded on trust, not speculation or notions of inability. We owe our students innovative learning experiences that are not limited by the school walls or by lack of coordination among the institutions that seek to educate them.

References


Afterschool Matters

Call for Papers

*Afterschool Matters* is a peer-reviewed journal dedicated to promoting professionalism, scholarship, and consciousness in afterschool education. Published by the National Institute on Out-of-School Time with legacy support from the Robert Bowne Foundation, *Afterschool Matters* serves practitioners who work with youth in out-of-school time (OST) programs, as well as researchers and policymakers in youth development.

We are seeking articles for future issues of the journal, beginning with Fall 2017. Scholarly or practice-based work on all aspects of OST programming for children and youth, from a variety of disciplines and academic perspectives, will be considered. We welcome submissions that explore practical ideas for working with young people in OST programs. Personal or inspirational narratives and essays are appropriate for our section “Voices from the Field.”

All articles, whether scholarly or practice-based, should connect theory to practice and should be broadly applicable across the field. Articles must be relevant and accessible to both practitioners and academic researchers.

We invite you to discuss possible topics in advance with us. A broad variety of topics will be considered, including the following:

- Innovative program approaches
- OST programs and civic engagement, social and emotional development, arts development, or academic improvement
- Research or best-practice syntheses
- OST program environments and spaces
- Key aspects of program leadership and administration
- OST system-building, such as cross-city and statewide initiatives
- Expanded or extended learning time and the OST hours
- School-community partnerships that support OST programming
- Physical activity and healthy eating
- STEM (science, technology, engineering, and math) program delivery or STEM staff professional development
- Special needs youth, immigrant and refugee youth, or other vulnerable populations in OST
- Youth-centered participatory action research projects
- Gender-focused research and policy initiatives related to OST

**Submission Guidelines**

- For consideration for the Fall 2017 issue, submit your article no later than January 10, 2017, to ASMsubmission@wellesley.edu.
- Submissions should not exceed 5,000 words.
- Submit your article electronically in Microsoft Word or rich text format. Use 12-point Times New Roman font, double-spaced, with one-inch margins on all sides. Leave the right-hand margin ragged (unjustified), and number pages starting with the first page of text (not the title page, which should be a separate document).
- Include a separate cover sheet with the manuscript title, authors’ names and affiliations, and the lead author’s phone number and e-mail address.
- The names of the authors should not appear in the text, as submissions are reviewed anonymously by peers.

We welcome inquiries about possible article topics. To discuss your ideas, please contact:

Georgia Hall, Ph.D.
Senior Research Scientist, Managing Editor
National Institute on Out-of-School Time
E-mail: ghall@wellesley.edu / Phone: 781-283-2530

Submit manuscripts electronically to ASMsubmission@wellesley.edu