2015

Cleaning Up and Painting Up: A Cultural and Environmental History of Paintshop Pond

Leah Nugent
lnugent@wellesley.edu

Follow this and additional works at: http://repository.wellesley.edu/library_awards

Recommended Citation
http://repository.wellesley.edu/library_awards/11

This Article is brought to you for free and open access by the Archives at Wellesley College Digital Scholarship and Archive. It has been accepted for inclusion in Student Library Research Awards by an authorized administrator of Wellesley College Digital Scholarship and Archive. For more information, please contact ir@wellesley.edu.
Introduction

My first impression of Paintshop Pond was that it was a little too perfect. As a first year student who always sought out adventure, I stumbled upon the lake in my very first week of school. The sound of a thundering waterfall drew me to the site, and I followed a metal railing to the dam, where the water crashed down so fast it appeared white (Fig 1). The pond connected to the dam was small yet pristine, surrounded by forest and far removed from the rest of campus. On the eastern bank, a thin line of brush separated the lake from the sports fields that I had been exploring just moments before. A plaque next to the dam explained Paintshop Pond's history; beginning in 1848, the pond provided power for a paint factory that became one of the “largest regional producers” of pigments in the early 20th century, until it shut down in 1928. Thereafter, the site was “left untouched until the 1980s,” when Wellesley College spent millions to clean up the metal pollutants at the site.¹

Fig 1: Paintshop Pond in April 2014. The pond is connected to Morses Pond to the north. The water from the dam pictured below flows into Waban Brook, which connects directly to Waban Lake.

Although there were trails around Lake Waban, I could not walk around Paintshop Pond. However, I could explore the wetlands just south of the lake, where a stream, Waban Brook, flowed from Paintshop Pond to Lake Waban (Fig 2). A forest of cattails seven feet high rose out of the water and hid the many small critters that dwelled within. I spent a happy afternoon walking through the cattails on a safe, wooden bridge created specifically for the enjoyment of

¹ Historical plaque mounted at Paintshop Pond, Wellesley College, April 2014.
Wellesley students. To me, these seemingly natural wetlands were much more appealing than Paintshop Pond and its artificial dam.

Fig 2: Waban Brook and the surrounding wetlands in April 2014.

Yet less than thirty years ago, the wetlands I explored did not exist at all. Instead, in the 1980s the area was covered in woods, and the “foundations of former [paint] factory buildings... several waste pigment piles [paint residues]... from the prior paint shop operations... and a large berm[d area formerly used as a settling basin” still remained on the site (Fig 3).² Not only was the physical landscape different, but Waban Brook's geographical location had shifted entirely.

Instead of forming two upside-down U shapes, as it does at present (Fig 4), the brook took the shape of a single U in the 1970s (Fig 5)—the same form it had held since the 1890s (Fig 6). A local resident, who was a child in the 70s, fondly remembers playing (illegally) amidst the “old” geography of Waban Brook and Paintshop Pond, with its waste pigment piles leaching into the water, turning the sediments on the bottom of the stream orange.³ In the 1980s-90s, Wellesley College cleaned up and reconstructed the Paintshop Pond area; the environment was “saved” – so much so that the physical remnants of its industrial history are nearly invisible today. Paintshop’s present “nature” is distinctly different from its past.

Fig 3: Two pictures of the area surrounding Paintshop Pond before Wellesley’s reconstruction of the area in the 1990s. The remnants of the paint factory buildings are still visible (picture on the right).

Fig 4: Aerial photograph of Paintshop Pond, Waban Brook, and Lake Waban. The pond is surrounded by trees. Note that the brook forms two upside-down U shapes (see arrows).

Source: Google Earth, August 24, 2013.

Fig 5: Paintshop Pond and Waban Brook in 1973. The estimated location of the paint factories’ old buildings is also displayed. Note that the brook only forms one upside-down U shape.

Fig 6: Paintshop Pond and Waban Brook in 1897. The shape of Waban Brook is similar to its shape in the 1970s. On the eastern bank, the paint factory's (Henry Wood Sons Co.) buildings are clearly visible. Note the railroad tracks that connect directly to the buildings.

One might argue that Paintshop’s shifting environmental history and geography may be understood using William Cronon’s concepts of first and second nature. In his influential book *Nature’s Metropolis*, Cronon argues that the explosive growth of the city of Chicago early in its history can be attributed to the availability of “first nature” (“natural”) resources in Chicago’s hinterlands. By drawing on nearby resources, such as forests, farm products, and livestock, Chicago transformed the products of nature into commodities that could be sold on the market (lumber, grain, meat). By placing itself at the center of this system, Chicago became one of the major cities in the United States. Similarly, in the case of Paintshop Pond, one might argue that the exploitation of energy (provided by first nature) allowed the manufacture of paints (representing second nature), which permitted the paint company to prosper (but also polluted the pond).

In the pages that follow, however, I will argue that concepts of first and second nature do not do justice to the complex history of Paintshop Pond. Like Cronon, I argue that “nature” is not

5 Ibid.
a uniform concept but rather a complex construction, both physically and conceptually. I also contend that first nature and second nature are deeply intertwined, to such an extent that their separation is itself artificial. However, I would like to extend Cronon’s analysis by noting that nature takes on distinct meanings for different groups of people in specific times and places. Instead of understanding the changes in “nature” as a linear progression, in which pristine, natural “first” nature is transformed into artificial “second” nature, I argue that “nature” is a complex composite that is constructed out of a host of changing physical and cultural materials. While first and second nature can be useful categories, they do not fully capture the complexities of Paintshop’s construction.

Over the last two centuries, one may recognize a variety of constructed natures at Paintshop Pond, each of which was created by a specific combination of historical factors. I will identify four distinct constructed natures at Paintshop: nature exploited for human use, nature as harmful to human health, nature ignored/discarded, and nature restored/saved. Each of these phases exemplifies a different mix of factors, including physical resources, cultural ideologies, technological improvements, market structures, labor needs and forms of representation. By examining Paintshop Pond’s cultural, geographical, and environmental history, the importance of understanding shifting “constructed natures” in a variety of contexts becomes clear.

The 1800s: Paintshop Pond’s Nature as An Exploited/Used Good

The first period considered in this paper—during which the dominant discourse concerning nature at Paintshop Pond depicted it as a resources to be exploited for profit—brings out the difficulties involved in separating first from second nature. This first period also points to the problems associated with understanding the changes in “nature” as a linear progression, in which a “first” nature separate from human influence is transformed into a manmade “second” nature. It is difficult to imagine a clearer example of the constructed nature of the environment.

Paintshop Pond itself exemplifies the difficulties of juxtaposing distinct natures. It cannot be considered an example of “first nature,” for it is a manmade body of water. In an 1836 map of the Wellesley area (Fig 7), a small stream forms a diagonal line between Morses Pond and Waban Lake; however, Paintshop Pond, which today exists between these two lakes, is not present. This

6 While these phases describe certain dominant views of Paintshop Pond’s nature, they are also simplifications. As my paper will demonstrate, during each period there have been a range of conflicting views about nature. Furthermore, the dominant narratives for the different periods overlap and inform one another.

suggests that Paintshop Pond was artificially constructed after 1836, most likely by Henry Wood, the founder of the Henry Woods’ Sons Paint Company (HWS), which was located along Paintshop Pond and Waban Brook from 1848-1928.⁸

Fig 7: 1836 Map of Morse's Pond and Bullard's Pond (Waban Lake). Significantly, Paintshop Pond does not exist on this map at all; instead, a small stream connects the two lakes (please note that the original map did not single out the position of the future Paintshop Pond).

Neither, however, can Paintshop be considered as a solely artificial creation, as an example of “second nature”; it was constructed in this particular location precisely because its environmental benefits aligned with certain patterns of 19th century paint manufacturing. During the mid-1800s, dams provided reliable power generation for early manufacturers before other options, such as electricity, were available. HWS’s reliance on a local water source, specifically one that could be dammed, limited the places where Henry Wood could build. In this sense, the stream connecting Morses Pond and Waban Lake was attractive because it allowed Wood to imagine the kind of “environment” that would address his needs.

Wood took additional steps to create the environment he required. He constructed HWS just .25 miles away from a major rail line that was owned by Boston & Albany railroad. Soon after the factory was completed, Wood built a spur track that linked the factory to Boston & Albany's

Transportation was crucial to HWS's survival not only because the railroad brought raw materials to the company but also because it transported finished products to market. By damming Waban Brook and building the railroad spur, Henry Wood constructed a new nature—one that benefitted his business ventures through a combination of human and "natural" elements.

Henry Wood’s understanding of the environment as something to be exploited was most likely only one view among many—a point about views of nature brought out by Karl Jacoby, in *Crimes Against Nature*, his influential work about national parks. Jacoby shows that the history of national parks has been told by those who have the financial, educational, and political resources to create a discourse that stresses conservation of pristine nature. However, the views of other groups, such as the Indians and Euro-American settlers who depended on the land for their livelihoods, were not included in this conceptualization of nature. For example, some Euro-Americans believed that they had the right to use the environment for subsistence purposes; others poached within park boundaries to prove their manhood or to earn a profit.

As Jacoby argues, it is crucial to remember who is able to tell history and who is not. This is a point that comes out with great clarity when we consider views of nature in the next period—in which certain groups (Wellesley administration and governmental health organizations) depicted nature at Paintshop Pond as harmful to human health.

1902-1932: Paintshop Pond’s Nature as Harmful to Human Health

Between 1902 and 1904, concerns regarding the pollutants from Paintshop Pond and their potential threats to human health began to emerge in certain documented discourses. Paintshop Pond was directly connected to Waban Lake via Waban Brook, and thus pollutants from the pond and factory were carried downstream to an area that Wellesley students used for swimming, bathing, boating, and even for ice. One of the first people to express their concerns about health risks was Pauline Durant, a founder of Wellesley College. In a letter to the Wellesley Board of Health, Pauline referred to a recent report from the State Board of Health, which noted that the water “in all parts of lake [Lake Waban]” was so contaminated by lead that the “water would be

11 Ibid 146.

very injurious for drinking.”13 The report in question also noted that significant quantities of lead were discovered in the ice harvested from the lake, which was used by Wellesley students.14 Durant urged the board to “not allow any ice… in your pitchers of water or milk” because “our girls must not be lead poisoned by our carelessness in use of ice.”15

Soon thereafter, the Wellesley Board of Health (BOH) and the Massachusetts State BOH began an intense regimen of testing and investigation into the effects of Paintshop’s pollutants on Lake Waban (but not Paintshop Pond), in order to protect a specific interest group: “our girls.” Wellesley’s BOH referred Lake Waban’s pollution problem to the State BOH not only because certain unidentified organizations/persons consistently complained about the problem, but also because the lake was “a state body of water [Lake Waban].”16 While the Wellesley BOH did not disclose the names of the particular individuals/organizations who complained about Lake Waban’s pollution, it most likely included Wellesley College administration, and also Pauline Durant. The college was one of the few groups that used the lake, and thus had an interest in its cleanliness; the college also possessed the power to voice complaints.17

What views of nature, the environment and environmental justice were implicit in this complaint? It is interesting that concerns about pollution arose only when the health of one particular element of “nature”—a state-owned lake—was perceived to be at risk; no concerns were raised about Paintshop Pond, which was privately owned, by HWS. It is equally interesting that concerns arose only when the health of a particular social category—upper-middle class, primarily white girls—was threatened; the health of company workers, who were exposed to lead extensively, on a daily basis, was never mentioned. It is also important to note that the girls whose health was the focus of official concern were unable to voice their own opinions—that they lacked power and agency (Pauline Durant spoke \textit{on behalf} of the students). Finally, it is noteworthy that all of these concerns were connected to \textit{human} health; there appear to have been no concerns about ecosystem, wildlife, or plant health. The pollution discourse that emerged at this time thus constructed nature at Paintshop in very specific terms—terms that privileged

13 Massachusetts State Board of Health, \textit{Thirty-Fifth Annual report of the State Board of Health of Massachusetts}, (Boston, Massachusetts: Public Document No. 34, 1904), 130.
14 Ibid.
15 Letter from Pauline Durant to the Wellesley Board of Health(?), 1903 A3. Paintshop Pond Papers, Wellesley College Archives.
17 It is also possible that the Hunnewells, who also owned properly around the lake, may also have complained. As one of the richest families in Wellesley, they were also powerfully positioned to make such a complaint, as opposed to other groups (such as Wellesley students).
human health over the health of other living organisms, and emphasized the health of privileged peoples and state lands over those of lower class workers and private lands.¹⁸

While it is interesting to note that environmental justice issues emerged at this time, it is important to ask why there appear to be no such concerns in public discourse prior to 1902. New knowledge and testing regarding pollutants that was previously unavailable may help explain this shift in concern. As late as 1902, the assistant engineer of the State BOH did a survey of Lake Waban’s pollution. He noted that the “[stream] bed is of a very bright color and the water flowing in the brook is at times highly colored.” However, he did not understand that the colors indicated the presence of dangerous concentrations of lead. Instead, he said, “I could not learn that any matter entered the brook which would in any way affect the health of the public, or of those living near the stream below” and that “it is probably in no sense a menace to health.”¹⁹

However, this view was soon challenged. In the same year, the State BOH’s chemist, H.W. Clark, performed a series of water tests around Lake Waban and determined that the water had such a high lead content that it was unsafe to drink. Clark argued that this was due to the impact of HWS, which released as much as 150 pounds of lead per day into Paintshop Pond and Waban Brook, as waste liquid.²⁰ While he noted the lead’s risk to human health, Clark also emphasized that the loss of lead was “a serious [financial] loss to the company owning the mill… and should, if possible, be prevented.”²¹

New techniques for testing pollutants appear to have been only one reason for the emergence of a discourse stressing the dangers of the environment in the early 20th century. A second factor appears to have been sweeping changes in the paint industry, which rapidly made factories like HWS obsolete. In the context of rapidly shifting technologies and geographies of paint manufacturing, HWS was transformed from a vibrant and profitable center of production into a struggling backwater, on the margins of profitability and legitimacy. In the process, new “environments” became important to the paint manufacturing industry, while others, like Paintshop Pond, were no longer “useful.”

In the late 19th century, ready-made paint did not exist; instead, HWS, like other paint

¹⁸ It is likely that Wellesley students and HWS workers had different views of nature because they interacted with it in different ways. Because these groups are not usually represented in documented discourse, more research is needed on this topic.

²⁰ Department of Environmental Protection, Consulting Engineers' Reports, 1903: v.1.: book 20, "Report upon the wastes from the paint mill factory of henry wood's sons," pg 363-365, May 1, 1903, EN3.12/series 1259X, Massachusetts Archives, Boston, Massachusetts.

²¹ Ibid.
manufactures of the time, produced raw pigments. Only specialized painters were able to hand-
mix HWS’s raw pigments and paint oils together, and did so onsite (i.e. at the house that the
specialist needed to paint) to create usable paint. Even though hand mixing was a “haphazard
method of paint production [it was] all that was available until the late 18th century.”
Meanwhile, paint demand continued to increase, and HWS was prospering greatly. By the
1880s, HWS was producing as much as six tons of paint pigment per day, making it one of the
largest producers in the New England. As long as HWS continued to thrive, there was virtually
no discussion of the possible harm that the factory was inflicting upon the environment.

By the 1880s, however, ready-made canned paints were becoming increasingly popular. Instead of relying on experts to paint their homes, Americans began doing their own painting, using canned paints. As a result, the number of consumers multiplied at record speeds; between 1899 and 1909 alone, “the value of [ready-made] paints and varnishes produced in the United States rose by 80 percent.”

Part of the reason for the success of ready-made paint was the ability of 20th century factories to draw on a new global hinterland of physical resources that minimized the importance of the environmental benefits that Paintshop Pond provided to HWS. For example, paint companies began to take advantage of new sources of electrical power. Instead of being bound to water sources, as had previously been the case, paint factories could be established in any location. These changes reconfigured the entire geography of the paint industry, and companies began to move to urban areas in order to take advantage of growing concentrations of people who could serve as workers in paint factories. Companies such as “Dutch Boy” were able to utilize this labor as well as new technological innovations to mass-produce huge quantities of paint that dwarfed the production of HWS.

Additionally, instead of relying on local physical resources such as water, the paint production processes of the 1900s drew upon inputs from across the world. These new factories

23 Ibid.
were able to isolate themselves physically from the natural resources they utilized. In other words, the factories of the 20th century relied on the “natures” of numerous locations to provide raw materials for paint manufacturing, instead of the more local natural resources in the 1800s. For example, “just for the liquid portion of [a paint company's] [high grade paint] formula,” paint producers were using turpentine from Florida, benzine from Texas, wood oil from China, lead from Montana, manganese from the Caucasus, and Kauri gum from New Zealand.³⁰

While HWS and other mid-19th century paint factories also required materials from other locations, their physical inputs came from places that were much closer to the paint factories. In fact, limited transportation options most likely limited the places where 19th century paint companies could procure goods. Because Wood's paint factory was isolated from the urban areas that were becoming the new centers of paint production, it was unable to use the new materials, techniques, and technologies that were the product of the 20th century. As a result, by 1900, HWS was already experiencing serious financial difficulties, and in 1910 it had to borrow $10,000 dollars (approximately $240,000 in today’s currency) from the college.³¹ Four years later, HWS and Wellesley College were discussing the possibility of selling all of HWS’s land to the college.³² By 1921, Wellesley had a $15,000 dollar mortgage on HWS’s property, and HWS’s insurance policies were canceled because it failed to pay the premiums.³³

It was in the context of these mounting financial difficulties that Wellesley College raised its concerns about pollution. In 1917, Wellesley’s Superintendent wrote a letter to HWS complaining about “chemicals over-flowing the tanks [settling vats] and finding their way … into the lake [Waban].”³⁴ In 1926, the college again corresponded with the commissioner of public health, who sampled HWS’s wastes and recommended that the company construct additional settling tanks.³⁵ Beginning in the late 19th century, structural changes in the paint industry both created and relied upon new globalized natures and physical resources, which displaced other natures, such as Paintshop’s. It was only in this context—when HWS was failing economically—

³² Two letters from Storey, Thorndike, Palmer & Dodge to Mr. Louis Morse (HWS) concerning the selling of the Paintshop land to Wellesley College, 1914, A11 and A13, Paintshop Pond Papers, Wellesley College Archives.
³⁴ Letter from the Superintendent [Wellesley College] to HWS concerning the settling vats that are overflowing the tanks and flowing into the lake, 1917, A16, Paintshop Pond Papers, Wellesley College Archives.
³⁵ Letter from the Commissioner of Public Health to the President of Wellesley College regarding HWS’s and its pollution of Lake Waban, 1926, A13, Paintshop Pond Papers, Wellesley College Archives.
that Wellesley began to reassess the significance of the environment that the factory had created.

1902-1970: Nature as Ignored/Discarded

As previously demonstrated, the State and Wellesley BOH went to great lengths to address pollution concerns beginning in the early 1900s. However, while these government agencies investigated pollution concerns, they did little to curb the pollution. For example, in response to the concerns of the State BOH regarding lead pollution, HWS installed several settling tanks that were intended to catch pollutants before they were discharged into Paintshop Pond.

At first (beginning in 1904), the Wellesley BOH was careful to review the effectiveness of these measures, noting that “only about one-third of the [factory’s] wastes are discharged into [the] tanks, the remainder still being allowed to flow” directly into the pond, and thereby into Lake Waban. Even though the Wellesley and State BOH were aware of the limitations of HWS’s pollution measures, however, they did not suggest any additional pollution reduction measures. In fact, in its 1907 public report, the Wellesley BOH declared that the “negotiations for stopping the pollution of Lake Waban… have practically been completed.” Similarly, in 1926, the commissioner of public health (from the Wellesley SBOH) sampled Lake Waban’s water, at the request of Wellesley’s president. However, the commissioner also noted that he had spoken to HWS a year previously, and had asked that the company to install settling vats to combat lead pollution. HWS, however, had failed to comply with his request.

The Wellesley BOH was not the only group that began to knowingly ignore pollution concerns. In 1932, Wellesley College purchased Paintshop Pond and its surrounding area; four years earlier, HWS had gone bankrupt and vacated the area. Despite the fact that the college itself had previously brought up serious concerns regarding Paintshop’s pollution, however, as the new owner it did nothing to address the problem until the 1980s, when the college “discovered” lead and chromium contaminants in the soil. However, as early as 1926 (just six years before Wellesley bought the pond), Wellesley’s president was asking state agencies to address pollution

36 Massachusetts State Board of Health, *Thirty-Sixth Annual Report of the State Board of Health of Massachusetts*, (Boston, Massachusetts, 1904), 104.
37 Ibid.
39 Massachusetts State Board of Health, *Annual Report of the State Board of Health of Massachusetts, Volume 38*, (Boston, Massachusetts, 1907).
41 Historical plaque mounted at Paintshop Pond, Wellesley College, April 2014.
issues that originated in the Paintshop area.42 While the BOH and Wellesley College were more than willing to raise the pollution issue, they were unwilling to do much more than that.

As these examples suggest, nature was subject to a variety of conflicting uses and interpretations during this era. In the following pages, I argue that even as Wellesley College administrators constructed Paintshop as a human health hazard (between 1903-1932), alternate imaginings regarding lead pollution existed in public discourse in the United States. Dominant cultural ideologies about paint and lead “dislocated” paint from its polluting origins, and instead portrayed it as outside of nature: as a modern, “pure” technological and moral achievement of the 20th century. Ironically, this image of a disconnected nature co-existed with the college’s explicit concerns in the early 1900s. This should not surprise us. As Karl Jacoby shows with respect to national parks, contradictory views of nature and the environment may exist at the same time. Unlike the case that Jacoby discusses, however, during this period in the history of Paintshop Pond, it is relatively easy to recognize the existence of conflicting views.

As noted in the 1903 State and Wellesley BOH reports, the pollution caused by HWS came primarily from lead.43 While HWS was no longer in operation by 1928, companies that manufactured ready-made canned paint still greatly depended on lead. In fact, “up to 70 percent of a can of paint in the first half of the [20th] century was composed of lead pigments.”44 Therefore, the portrayal of lead paint and its potential human and environmental health effects was of central concern to the lead paint industry, whether that lead was in the water and soil around Paintshop, or in the ready-made paint used all across the United States.

I argue that the paint industry, via advertisements and promotional campaigns, constructed an image of lead paint as a highly desirable, modern, consumer good. These ideas held great appeal to a public that had just begun to embrace consumerism and modernity. As the image of lead paint became inseparable from being modern, other imaginings, such as the potential pollution caused by lead products, were lost in dominant discourse.45 In this context, the

42 Letter from the Commissioner of Public Health to the President of Wellesley College regarding HWS’s and its pollution of Lake Waban, 1926, A13, Paintshop Pond Papers, Wellesley College Archives.

43 Department of Environmental Protection, Consulting Engineers' Reports, 1903: v.1.: book 20, “Report upon the wastes from the paint mill factory of henry wood's sons,” pg 357-8, May 1, 1903, EN3.12/series 1259X, Massachusetts Archives, Boston, Massachusetts.

44 Yellow paint served as the “main portion of the paint shipped in [from] the works [factory].” Other colors were created by mixing several paint colors that contained lead, and thus the concentrations of lead chromate and lead acetate in these colors were even higher than they were in yellow paint.

45 Gerald Markowitz and David Rosner, \textit{Lead Wars: The Politics of Science and the Fate of America's Children} (Berkeley and Los Angeles: University of California Press, 2013), 8.

44 These alternative constructions may have encouraged Wellesley College to ignore the pollution at Paintshop Pond between 1932 and 1980, and it may have influenced ambivalent behavior toward pollution control efforts by the BOH between 1907 and 1926. More research is needed to determine whether these conjectures are true.
health concerns that had motivated Wellesley’s construction of Paintshop as a threat to human health were displaced by alternative conceptions—which held sway from the 1930s to the 1980s.

Like Wellesley and the State BOH, the paint industry was well aware of the health hazards associated with lead paint. In fact, into the early 1900s, paint companies who did not use lead, such as zinc paints, used lead poisoning as a tactic to encourage consumers to buy their paints. For example, a 1905 advertisement (Fig 8) asks if it is “worth the risk of a painful life or premature death, to insist on pure white lead in house paints?”

Instead of addressing health concerns, however, public discourses surrounding lead poisoning were “silenced by design” across the United States as a whole. For example, the lead paint industry launched the “Clean Up and Paint Up” (CUPU) Campaign in the 1910s. The campaign was intended to “establish that five-word slogan everywhere” and increase paint sales via advertising. Some articles even argued that “getting everybody to be a user of paint is the duty of every one in the business.” Even before CUPU, however, advertisements emphasized the benefits of lead paint, such as its unparalleled strength; for example, an ad from 1903 emphasizes lead paint’s “purity” (compared to mixed-paints) and its durability (Fig 9). By 1913, paint manufacturers who promoted CUPU, as well as advertisements of the time, described paint

48 “What is This Campaign?” *American Paint and Oil Dealer, Volume 5* (9), May 1913, 7.
49 John Allen Murphy, “A Paint Man’s Opinions,” *American Paint and Oil Dealer, Volume 5*, 1913 36.
as a “civilizing influence” (Fig 10) that “makes life more livable and loneliness more endurable.”51 Others claimed that (lead) paint had a “sanitary effect,” and that this applied not only to paint but also to insecticides, cleaners, and polishes.52 The campaign was an incredible success. Companies noted that their May (1913) paint sales were three times larger than any former year.53 By 1916, paint sales across the entire United States had increased by 25-50%; the campaign was so effective that it lasted into the 1970s.54

By selling a product that represented modernity (Fig 11), “purity, cleanliness, [and] renewal,”55 the “Clean Up and Paint Up” Campaign erased other images of lead paint, such as its

Fig 9: A 1905 Advertisement for “strictly pure white lead” paint. Note that lead is associated with durability, whiteness, and purity.

Fig 10: A 1913 ad that instructs [paint] dealers how to promote their paint products, specifically by invoking the idea of the “civilizing influence of paint.”

51 John Allen Murphy, “A Paint Man’s Opinions,” \textit{American Paint and Oil Dealer}, Volume 5, 1913 36.

52 Charles-Allen Clark, “Making it Move: another booster ballou story,” \textit{American Paint and Oil Dealer}, 1913, 28.

portrayal as a polluting (and therefore “dirty”), dangerous product. In addition, representing paint as a modern consumer product disassociated it from its origins—not only from the physical inputs required to create the paint but also from the physical places where it was created, like Paintshop Pond. This separation was artificial, but it created powerful associations between purity, modernity, and cleanliness—all of which were represented by the consumption of goods like (lead) paint. In this context, alternative views of lead were pushed to the sidelines.

As we saw in section 2, however, Wellesley College was intimately connected to the pollution caused by lead manufacturing. In this different context, it constructed a different view of nature and pollution.

1970-Present: Nature as Restored/Saved

During the 1970s, the federal government established foundational environmental legislation that heavily influenced government regulation of the environment, including the Clean Air Act (1970), the Clean Water Act (1972), the Coastal Zone Management Act (1972), 56 and the formation of Nixon’s Environmental Protection Agency (EPA). 57 These changes occurred amidst a powerful wave of popular interest in environmental protection; for instance, in 1970, over twenty million Americans participated in the first Earth Day. 58 This surge in environmental interest was no accident; the modern environmental movement was driven by several macro-

58 Ibid 47.
drivers. These include: the 1970s “political momentum behind pollution control,” growing concerns about resource shortages and the safety of post-war technology (such as the atomic bomb and chemical weapons), environmental disasters such as the Santa Barbara oil spill of 1969, increases in the United States GDP, and the rise of various social movements, including the feminist and civil rights movement.

Amidst these new forms of government regulation and the unprecedented support of the general public, in 1975 the newly formed Massachusetts Department of Environmental Quality Engineering (now known as the Massachusetts Department of Environmental Protection), which was “charged with protecting the public from hazardous waste,” informed Wellesley College that the Paintshop Pond site was polluted. Consequently, the Massachusetts Division of Environmental Control requested that the college provide soil samples from the two paint pigment piles that still lay untouched in the area surrounding Paintshop Pond.

The results from that test spurred a flurry of testing and restoration action unparalleled in Paintshop’s history. Between 1975 and 2002, Wellesley College spent over 30 million dollars to decontaminate and reconstruct the Paintshop Pond area. As much as 7 million dollars was spent on surface water, groundwater, and soil samples and tests alone. Even though Wellesley had not caused the contamination, Wellesley College’s spokeswoman, Mary Ann Hill, stated that the law was “very very [repetition intended] clear in terms of who pays and that is who owns the land.” For the previous 40 years, Wellesley had left the Paintshop Pond area untouched; interestingly, having known about the dangers represented by Paintshop and its environs, and despite having raised concerns about this problem as early as 1903, the college began its pollution cleanup efforts only after changes in the modern environmental movement and the formation of regulating governmental environmental bodies redefined the environment at Paintshop as

59 Ibid 49.
60 Ibid 2.
66 The financial burden of a private company’s (HWS) pollution was passed from those who profited from that pollution to an educational institution (Wellesley College) who not only did not benefit from the pollution but was also potentially negatively impacted by the pollution (in terms of environmental damages and human health risks). This situation pertains to interesting environmental justice issues as well as questions about responsibility and risk.
profoundly hazardous.

Wellesley’s restoration efforts included the removal of 3600 tons of waste pigment from two pigment waste piles in 1991; 68 overall, the college treated 35,000 cubic yards of earth over the course of the restoration efforts. 69 Soils that were not treated for contamination were consolidated under four impermeable barriers so that “neither humans nor wildlife would come into contact with the contaminated materials.” 70 In 2001, the college took additional steps to “bury” the evidence of the earlier period of contamination by building four athletic fields on top of these barrier “caps.” Wellesley then went on to entirely redesign 40 acres of ponds, brooks, and earth, and most notably wetlands. In fact, an article describing Wellesley’s cleanup efforts was titled “Painting the Wetlands Green: how Wellesley reclaimed the hazardous Paintshop Pond site and recreated an ecosystem.” 71 The cover of the magazine depicts glorious color photographs of the newly created space. Arlene Cohen’s book Wellesley College also celebrates the “restoration of the natural wetlands” that included a “boardwalk… crossing the wetlands that serve as a living laboratory for students.” 72

Admittedly, Wellesley’s cleanup efforts were impressive; they treated an area that had soils with metal concentrations of up to 15% lead and 11% chromium 73 and created a safe recreational space for the enjoyments of both humans (trails, sports fields) and wildlife (via habitat creation). However, it is interesting that Wellesley reconstructed a “hazardous” site in such a way that groups who were well positioned to represent the activities of the College, such as Cohen and Wellesley magazine, reimagined the space as “natural.” This was no accident; after all, Wellesley reshaped the area’s landscape by constructing wetlands and diverting Waban Brook; they even reconstructed the dam at Paintshop Pond, so that it was more picturesque (Fig 3: original dam, Fig 1: new dam), and deepened the pond. 74 Interestingly, instead of preserving the stone foundations of the HWS factory that had stood on the site since the 1800s, Wellesley College destroyed them (Fig 3). In their place, the college created the beautiful wetlands and

70 Ibid.
grounds that Wellesley magazine praised so highly (Fig 2). In the process, Wellesley transformed an area of “second nature” into what appeared to be “first nature.” This newly constructed Paintshop Pond expressed many modern environmental ideologies by stressing the importance of ecosystems, wildlife and the concept of “restoring” natural spaces.

However, other less visible conceptions of nature co-exist with the new nature of Paintshop Pond. An area resident who played at Paintshop area as a child spoke about doing so with great longing and nostalgia. She remembered playing among the stone structures left behind by HWS. She also remembered the forests that used to cover the entire area. The resident was sad that the structures were gone; they had given Paintshop “character,” she said, and argued that the college should have preserved these historically significant structures. She believes that they represented something that was too “artificial” to fit into Wellesley’s vision of a natural

Fig 12: Aerial view of the Paintshop Pond site during (Picture 1) and after (Picture 2) the cleanup. The pond is depicted at the very bottom of each picture; it is nearly unrecognizable in Picture 1.

Picture 1

76 Ibid.
ecosystem.77 Much like the Euro-American settlers that viewed America’s new national parks as taking something away from them (as Jacoby shows), this resident seemed to feel that she had lost something important when Wellesley converted a former industrial site into a natural preserve. While written discourses sometimes display Paintshop’s reconstructed nature as pristine, it is important to remember that Paintshop’s nature is constructed, and also that it holds different meanings among various groups of people.

Conclusion

My first encounter with Paintshop Pond left me with the impression that the pond was artificial while the surrounding wetlands were more “natural;” the “nature” of both areas, however, was far more complex than I could have known. Over the last century and a half, Paintshop Pond has been imagined, constructed and represented in a variety of ways by different groups of people. To Henry Wood, it was a source of power and profit from which his company could prosper; to Wellesley administrators in 1904, it was a source of danger and threat to “our girls”; to the American public in the mid-1900s, it was an invisible space that was disconnected from the wonders of modernity; to journalists in the 2000s, it was formerly a toxic site that had been restored to its natural state; and to a local resident, it was a unique, special place from her childhood that had been lost.

77 Anonymous, Interview by Leah Nugent, Wellesley, Massachusetts, May 5, 2014. The interviewee asked that I not reveal his/her identity.
These contrasting constructions/representations suggest that “nature” is not pure, uniform and undifferentiated, but rather is a complex, evolving construction, in both physical and conceptual terms. They further suggest that concepts of first nature and second nature, proposed by William Cronon in *Nature’s Metropolis*, are best understood as deeply intertwined, to such an extent that their separation is arbitrary and artificial. The changes that “nature” undergoes do not follow a linear path, in which a “first” nature separate from human influence is transformed into manmade “second” nature. Rather, as the history of Paintshop Pond shows, “nature” is always a composite. Not only is it defined, understood, and valued in distinct ways by different groups of people in specific times and places, it is also constructed out of a host of changing physical and cultural factors. Only such an understanding, I suggest, can do justice to the complex environmental history of Paintshop Pond and to environmental history in general.