2015

Functorial CW-approximation

Philip S. Hirschhorn
phirshh@wellesley.edu

Follow this and additional works at: http://repository.wellesley.edu/scholarship

Recommended Citation
FUNCTORIAL CW-APPROXIMATION

PHILIP S. HIRSCHHORN

Abstract. The usual construction of a CW-approximation is functorial up to homotopy, but it is not functorial. In this note, we construct a functorial CW-approximation. Our construction takes inclusions of subspaces into inclusions of subcomplexes, and commutes with intersections of subspaces of a fixed space.

Contents

1. Introduction 1
2. The main theorems 2
2.1. The first factorization 2
2.2. The second factorization 2
2.3. Relative CW-approximation 3
3. The proof Theorem 2.1 4
3.1. The construction 4
3.2. The homotopy groups of the spaces in the construction 5
3.3. The functoriality of the construction 6
4. The proof of Theorem 2.2 7
4.1. The construction 7
4.2. The homotopy groups of the spaces in the construction 7
4.3. The functoriality of the construction 8
5. Proof of Proposition 2.3 8
6. Proof of Theorem 2.4 9
7. The proof of Theorem 2.5 9
References 10

1. Introduction

A CW-approximation to a topological space B is a CW-complex \tilde{B} together with a weak equivalence $\tilde{B} \to B$. The usual construction of a CW-approximation is functorial up to homotopy, but it is not functorial. In this note, we construct a functorial CW-approximation. Our construction takes inclusions of subspaces into inclusions of subcomplexes (see Theorem 2.1), and commutes with intersections of subspaces of a fixed space (see Theorem 2.5).

We construct a CW-approximation to a space using a construction that functorially factors a map $A \to B$ as $A \to \tilde{B} \to B$ where $A \to \tilde{B}$ is a relative CW-complex.

Date: August 8, 2015.
and \(\tilde{B} \to B \) is a weak equivalence; applying this to the map \(\emptyset \to B \) produces a CW-approximation \(\tilde{B} \to B \) to \(B \).

We actually define two such factorizations. The first is for arbitrary maps \(A \to B \) (see Theorem 2.1). If \(A \) is a nonempty CW-complex, though, then the relative CW-complex \(A \to \tilde{B} \) that it produces will not, in general, be the inclusion of a subcomplex. Thus, we construct a different functorial factorization in Theorem 2.2 for maps \(A \to B \) in which \(A \) is a CW-complex; in the factorization \(A \to \tilde{B} \to B \) that it produces, the relative CW-complex \(A \to \tilde{B} \) is the inclusion of a subcomplex.

We show in Theorem 2.4 that if the factorization of Theorem 2.1 is used to construct a functorial CW-approximation (by factoring the maps with domain the empty space), then this construction turns an inclusion of a subspace into an inclusion of a subcomplex, i.e., if \(B \) is a subspace of \(B' \), then \(\tilde{B} \) is a subcomplex of \(\tilde{B}' \). Thus, it defines a functorial CW-approximation for pairs, triads, etc. We also show that this operation commutes with taking intersections of subspaces of a fixed space (see Theorem 2.5).

2. The main theorems

2.1. The first factorization.

Theorem 2.1. Every map \(f : A \to B \) has a functorial factorization \(A \xrightarrow{j} \tilde{B} \xrightarrow{p} B \) such that \(j \) is a relative CW-complex and \(p \) is a weak equivalence.

To obtain a CW-approximation \(\tilde{B} \to B \) to a space \(B \), you apply the factorization of Theorem 2.1 to the map \(\emptyset \to B \). We show in Theorem 2.4 that if \(B \) is a subspace of \(B' \) then the map \(\tilde{B} \to \tilde{B}' \) is the inclusion of a subcomplex, and we show in Theorem 2.5 that this operation commutes with taking intersections of subspaces of a fixed space.

The outline of the proof of Theorem 2.1 follows that of the standard construction of a CW-approximation, but instead of choosing maps of spheres that represent elements of homotopy groups to be killed by attaching disks, we attach disks using all possible such maps. Thus, we attach many more cells than are required, but the result is that our construction is functorial.

This construction is a cross between the usual construction of a functorial-only-up-to-homotopy CW-approximation to a space and the small object argument used to factorize maps in model categories ([11 Prop. 10.5.16]). The standard small object argument would produce a factorization into a relative cell complex (in which the attaching maps of cells do not, in general, factor through a subspace of lower dimensional cells) followed by a map that is both a weak equivalence and a fibration; our construction produces a relative CW-complex followed by a weak equivalence. The proof of Theorem 2.1 is in Section 3.

2.2. The second factorization. If the space \(A \) is nonempty, then even if it is a CW-complex, the space \(\tilde{B} \) produced by Theorem 2.1 will not generally be a CW-complex, because there is no restriction on how the cells attached to construct \(\tilde{B} \) out of \(A \) meet the cells of \(A \). Thus, we will also prove the following theorem.

Theorem 2.2. Every map \(f : A \to B \) such that \(A \) is a CW-complex has a functorial factorization \(A \xrightarrow{j} \tilde{B} \xrightarrow{p} B \) such that \(j \) is the inclusion of a subcomplex of a CW-complex and \(p \) is a weak equivalence, where “functorial” means that it is natural.
with respect to diagrams

\[
\begin{array}{ccc}
A & \xrightarrow{f} & A' \\
\downarrow & & \downarrow \\
B & \xrightarrow{g} & B'
\end{array}
\]

in which \(f : A \to A' \) is a cellular map of CW-complexes.

Theorem 2.2 can also be used to obtain a functorial CW-approximation to a space \(B \) by applying it to the map \(\emptyset \to B \), but we show in Proposition 2.3 that this produces the same result as using Theorem 2.1.

The proof of Theorem 2.2 is in Section 4.

Proposition 2.3. If \(\tilde{B} \to B \) is the CW-approximation to \(B \) obtained by applying the factorization of Theorem 2.1 to \(\emptyset \to B \) and \(\tilde{B} \to B \) is the CW-approximation to \(B \) obtained by applying the factorization of Theorem 2.2 to \(\emptyset \to B \), then there is a natural isomorphism \(\tilde{B} \to \tilde{B} \) that makes the diagram

\[
\begin{array}{ccc}
\tilde{B} & \xrightarrow{f} & \tilde{B}' \\
\downarrow & & \downarrow \\
B & \xrightarrow{f} & B'
\end{array}
\]

commute.

The proof of Proposition 2.3 is in Section 5.

2.3. Relative CW-approximation. The constructions of Theorem 2.1 and Theorem 2.2 can be used to create relative CW-approximations.

Theorem 2.4. If \((B', B)\) is a pair of spaces (i.e., if \(B \) is a subspace of the space \(B' \)) then in the commutative square

\[
\begin{array}{ccc}
\tilde{B} & \xrightarrow{f} & \tilde{B}' \\
\downarrow & & \downarrow \\
B & \xrightarrow{f} & B'
\end{array}
\]

obtained by applying the factorization of Theorem 2.1 to the maps \(\emptyset \to B \) and \(\emptyset \to B' \), the map \(f : \tilde{B} \to \tilde{B}' \) is an inclusion of a subcomplex.

Thus, Theorem 2.1 creates relative CW-approximations for pairs, triads, etc. Alternatively, given a pair \((B', B)\), one could apply Theorem 2.2 to the map \(\emptyset \to B \) to obtain \(\tilde{B} \to B \) and then apply Theorem 2.2 to the composition \(\tilde{B} \to B \to \tilde{B}' \) to obtain \(\tilde{B}' \to B' \), and \(\tilde{B} \) would be a subcomplex of \(\tilde{B}' \). The proof of Theorem 2.4 is in Section 6.

Theorem 2.5 (CW-approximation commutes with intersections). If \(X \) is a space, let \(\text{CW}(X) \) denote the CW-complex obtained by applying the factorization of Theorem 2.1 to the map \(\emptyset \to X \). If \(X \) is a space, \(S \) is a set, and for every element \(s \) of \(S \) we have a subspace \(X_s \) of \(X \), then each \(\text{CW}(X_s) \) is a subcomplex of \(\text{CW}(X) \),
and
\[\bigcap_{s \in S} \text{CW}(X_s) = \text{CW} \left(\bigcap_{s \in S} X_s \right). \]

The proof of Theorem 2.5 is in Section 7.

3. THE PROOF THEOREM 2.1

We construct the factorization in Section 3.1, show that the map \(\tilde{B} \to B \) is a weak equivalence in Section 3.2, and show that the construction is functorial in Section 3.3.

3.1. The construction. We will construct a sequence of spaces

\[
\begin{array}{c}
A = A_{-1} \rightarrow A_0 \rightarrow A_1 \rightarrow \cdots \\
\downarrow \\
\downarrow \\
\downarrow \\
B
\end{array}
\]

that map to \(B \) and then let \(\tilde{B} = \text{colim}_n A_n \). Each \(A_n \) for \(n \geq 0 \) will be constructed from \(A_{n-1} \) by attaching \(n \)-cells in such a way that the map \(A_n \to B \) is \(n \)-connected (see Notation 3.1). Since spheres and disks are compact, any map from a sphere or disk to \(\text{colim}_n A_n \) will factor through some \(A_n \), and so we will have \(\pi_i \tilde{B} = \text{colim}_n \pi_i A_n \) for all \(i \geq 0 \), and the map \(\tilde{B} \to B \) will be a weak equivalence.

We begin by letting \(A_{-1} = A \), and then defining
\[
A_0 = A_{-1} \amalg \left(\coprod_{D^0 \to B} \right).
\]

That is, we let \(A_0 \) be the coproduct of \(A_{-1} \) with a single point for each map of a point to \(B \); this maps to \(B \) by taking the \(D^0 \) indexed by a map \(D^0 \to B \) to \(B \) by that indexing map.

To construct \(A_1 \) we construct the pushout

\[
\begin{array}{ccc}
\coprod S^0 & \rightarrow & A_0 \\
\downarrow & & \downarrow \\
\coprod D^1 & \rightarrow & B
\end{array}
\]

where \(\text{Map}(S^0, A_0) \times_{\text{Map}(S^0, B)} \text{Map}(D^1, B) \) is the set of commutative squares

\[
\begin{array}{ccc}
S^0 & \rightarrow & A_0 \\
\downarrow & & \downarrow \\
D^1 & \rightarrow & B
\end{array}
\]

That is, for every such square we attach a 1-cell to \(A_0 \), and we use the bottom horizontal map of that square to map that attached 1-cell to \(B \).
If \(n > 1 \) and we have constructed \(A_{n-1} \) along with its map to \(B \), we construct \(A_n \) by constructing the pushout

\[
\begin{array}{ccc}
S^{n-1} & \rightarrow & A_{n-1} \\
\downarrow & & \downarrow \\
D^n & \rightarrow & B
\end{array}
\]

where \(\text{Map}(S^{n-1}, A_{n-1}) \times \text{Map}(D^n, B) \times \text{Map}(S^n, B) \) is the set of commutative squares

\[
\begin{array}{ccc}
S^{n-1} & \rightarrow & A_{n-1} \\
\downarrow & & \downarrow \\
D^n & \rightarrow & B
\end{array}
\]

That is, for every such square we attach an \(n \)-cell to \(A_{n-1} \), and we use the bottom horizontal map of that square to map that attached \(n \)-cell to \(B \).

To complete the construction we let \(\tilde{B} = \text{colim}_n A_n \), and the map \(A \rightarrow \tilde{B} \) is clearly a relative CW-complex. We show that the map \(\tilde{B} \rightarrow B \) is a weak equivalence in Section 3.2, and we show that the construction is natural in Section 3.3.

3.2. The homotopy groups of the spaces in the construction.

Notation 3.1. If \(f : X \rightarrow Y \) is a map and \(n \geq 0 \), then we will say that \(f \) is \(n \)-connected if

- the set of path components of \(X \) maps onto the set of path components of \(Y \), and
- for every choice of basepoint in \(X \) the induced map of homotopy groups (for \(i > 0 \)) or sets (for \(i = 0 \)) \(\pi_i(X) \rightarrow \pi_i(Y) \) is an isomorphism for \(i < n \) and an epimorphism for \(i = n \).

Lemma 3.2. For each \(n \geq 0 \) the map \(A_n \rightarrow B \) is \(n \)-connected.

Proof. We will show inductively on \(n \) that the map \(A_n \rightarrow B \) is \(n \)-connected.

The space \(A_0 \) was constructed to map onto \(B \), and so the map \(A_0 \rightarrow B \) is 0-connected.

The space \(A_1 \) was constructed by attaching 1-cells to \(A_0 \) that connected any pair of points in \(A_0 \) whose images were in the same path component of \(B \); thus, the set of path components of \(A_1 \) maps isomorphically to the set of path components of \(B \). In addition, a loop was wedged at every point of \(A_0 \) for every loop in \(B \) at the image of that point; thus, for every basepoint of \(A_1 \), the fundamental group of \(A_1 \) maps epimorphically onto the fundamental group of \(B \). Thus, the map \(A_1 \rightarrow B \) is 1-connected.

Suppose now that \(n > 1 \) and that the map \(A_{n-1} \rightarrow B \) is \((n-1)\)-connected. Since \(A_n \) is constructed from \(A_{n-1} \) by attaching \(n \)-cells, for every choice of basepoint we have \(\pi_i(A_{n-1}) \cong \pi_i(A_n) \) for \(i < n-1 \) and \(\pi_{n-1}(A_n) \) is a quotient of \(\pi_{n-1}(A_{n-1}) \). For every map \(\alpha : S^{n-1} \rightarrow A_{n-1} \) such that the composition with \(A_{n-1} \rightarrow B \) is nullhomotopic, we’ve attached an \(n \)-cell, and so the composition \(S^{n-1} \xrightarrow{\alpha} A_{n-1} \rightarrow B \) is nullhomotopic. We show that the map \(\tilde{B} \rightarrow B \) is a weak equivalence in Section 3.2, and we show that the construction is natural in Section 3.3.
A_n is nullhomotopic. Thus, π_{n-1}(A_n) → π_{n-1}(B) is an isomorphism for every choice of basepoint. In addition, for every map β: D^n/S^{n-1} → B for which the image of the collapsed S^{n-1} is in the image of A_{n-1} → B, we've wedged on a copy of D^n/S^{n-1} to A_{n-1} and mapped it to B using β, and so π_n(A_n) → π_n(B) is surjective for every choice of basepoint. Thus, the map A_n → B is n-connected. This completes the induction. □

We now let ˜B = colim_n A_n. Since spheres and disks are compact, every map from a sphere or disk to colim_n A_n factors through some A_n, and so we have colim_n π_i A_n ≅ π_i ˜B for i ≥ 0. Since the map π_i A_n → π_i B is an isomorphism for n > i, the map ˜B → π_i B is an isomorphism for i ≥ 0, and so the map ˜B → B is a weak equivalence.

3.3. The functoriality of the construction. We will now show that the construction of Section 3.1 is functorial, i.e., that if we have a commutative square

\[
\begin{array}{ccc}
A & \xrightarrow{f} & A' \\
\downarrow & & \downarrow \\
B & \xrightarrow{g} & B'
\end{array}
\]

and we apply the construction of Section 3.1 to A → B to obtain A → ˜B → B and to A' → B' to obtain A' → ˜B' → B', then there is a natural commutative diagram

\[
\begin{array}{ccc}
A & \xrightarrow{f} & A' \\
\downarrow & & \downarrow \\
B & \xrightarrow{g} & B'
\end{array}
\]

We define ˜g by defining f_n: A_n → A'_n inductively on the constructions of ˜B and ˜B'.

To begin, we have

\[
A_0 = A_{-1} \amalg \left(\coprod_{D^0 → B} D^0 \right) \quad \text{and} \quad A'_0 = A'_{-1} \amalg \left(\coprod_{D^0 → B'} D^0 \right)
\]

and we define f_0: A_0 → A'_0 by sending the copy of D^0 indexed by α: D^0 → B to the copy of D^0 indexed by g ∘ α: D^0 → B'.

For the inductive step, suppose that n > 0 and that we’ve defined f_{n-1}: A_{n-1} → A'_{n-1}. The space A_n is constructed by attaching an n-cell to A_{n-1} for each commutative square

\[
\begin{array}{ccc}
S^{n-1} & \xrightarrow{α} & A_{n-1} \\
\downarrow & & \downarrow \\
D^n & \xrightarrow{β} & B
\end{array}
\]
We take the cell attached to A_{n-1} by the map α to the cell attached to A'_{n-1} by the map $f_{n-1} \circ \alpha$ indexed by the outer commutative rectangle

$$
\begin{array}{ccc}
S^{n-1} & \xrightarrow{\alpha} & A_{n-1} \\
\downarrow & & \downarrow \\
D^n & \xrightarrow{\beta} & B
\end{array}
\quad
\begin{array}{ccc}
 & & f_{n-1} \\
\downarrow & & \downarrow \\
 & & A'_{n-1}
\end{array}
\quad
\begin{array}{ccc}
 & & g \\
\downarrow & & \downarrow \\
 & & B'
\end{array}
$$

Doing that for each n-cell attached to A_{n-1} defines $f_n: A_n \to A'_n$.

That completes the induction, and we let $\tilde{g}: \tilde{B} \to \tilde{B}'$ be $\text{colim}_n f_n$.

4. The proof of Theorem 2.2

We construct the factorization in Section 4.1, show that the map $\tilde{B} \to B$ is a weak equivalence in Section 4.2, and show that the construction is functorial in Section 4.3.

4.1. The construction. We use a modification of the construction of Section 3.1.

We construct A_0 exactly as in Section 4.1, but when $n > 0$ and we are constructing A_n out of A_{n-1}, we attach only the n-cells indexed by commutative squares

$$
\begin{array}{ccc}
S^{n-1} & \xrightarrow{\alpha} & A_{n-1} \\
\downarrow & & \downarrow \\
D^n & \xrightarrow{\beta} & B
\end{array}
$$

for which $\alpha: S^{n-1} \to A_{n-1}$ is a cellular map.

4.2. The homotopy groups of the spaces in the construction.

Lemma 4.1. For each $n \geq 0$ the map $A_n \to B$ is n-connected.

Proof. We will show inductively on n that the map $A_n \to B$ is n-connected.

The space A_0 was constructed to map onto B, and so the map $A_0 \to B$ is 0-connected.

The space A_1 was constructed by attaching 1-cells to A_0 that connected any pair of vertices in A_0 whose images were in the same path component of B; since every path component of A_0 contains at least one vertex, the set of path components of A_1 maps isomorphically to the set of path components of B. In addition, a loop was wedged at every vertex of A_0 for every loop in B at the image of that vertex; since every path component of B contains the image of a vertex of A_0, for every basepoint of A_1 the fundamental group of A_1 maps epimorphically onto the fundamental group of B. Thus, the map $A_1 \to B$ is 1-connected.

Suppose now that $n > 1$ and that the map $A_{n-1} \to B$ is $(n-1)$-connected. Since A_n is constructed from A_{n-1} by attaching n-cells, for every choice of basepoint we have $\pi_i(A_{n-1}) \approx \pi_i(A_n)$ for $i < n-1$ and $\pi_{n-1}(A_n)$ is a quotient of $\pi_{n-1}(A_{n-1})$. For every cellular map $\alpha: S^{n-1} \to A_{n-1}$ such that the composition with $A_{n-1} \to B$ is nullhomotopic, we’ve attached an n-cell, and so the composition $S^{n-1} \xrightarrow{\alpha} A_{n-1} \to A_n$ is nullhomotopic. Since every map $S^{n-1} \to A_{n-1}$ is homotopic to a cellular map, $\pi_{n-1}(A_n) \to \pi_{n-1}(B)$ is an isomorphism for every choice of basepoint. In addition, for every map $\beta: D^n/S^{n-1} \to B$ for which the image of the collapsed S^{n-1} is in the
image of a vertex of A_{n-1}, we’ve wedged on a copy of D^n/S^{n-1} to that vertex of A_{n-1} and mapped it to B using β; since every path component of B is in the image of a vertex of A_{n-1}, $\pi_n(A_n) \to \pi_n(B)$ is surjective for every choice of basepoint. Thus, the map $A_n \to B$ is n-connected. This completes the induction. \qed

We now let $\tilde{B} = \text{colim}_n A_n$. Since spheres and disks are compact, every map from a sphere or disk to $\text{colim}_n A_n$ factors through some A_n, and so we have $\text{colim}_n \pi_i A_n \approx \pi_i \tilde{B}$ for $i \geq 0$. Since the map $\pi_i A_n \to \pi_i B$ is an isomorphism for $n > i$, the map $\pi_i \tilde{B} \to \pi_i B$ is an isomorphism for $i \geq 0$, and so the map $\tilde{B} \to B$ is a weak equivalence.

4.3. The functoriality of the construction. We will now show that the construction of Section 4.1 is functorial, i.e., that if we have a commutative square

$$
\begin{array}{ccc}
A & \overset{f}{\longrightarrow} & A' \\
\downarrow & & \downarrow \\
B & \overset{g}{\longrightarrow} & B'
\end{array}
$$

in which $f: A \to A'$ is a cellular map and we apply the construction of Section 4.1 to $A \to B$ to obtain $A \to \tilde{B} \to B$ and to $A' \to B'$ to obtain $A' \to \tilde{B}' \to B'$, then there is a natural commutative diagram

$$
\begin{array}{ccc}
A & \overset{f}{\longrightarrow} & A' \\
\downarrow & & \downarrow \\
\tilde{B} & \overset{\tilde{g}}{\longrightarrow} & \tilde{B}' \\
\downarrow & & \downarrow \\
B & \overset{g}{\longrightarrow} & B'
\end{array}
$$

We define \tilde{g} by defining $f_n: A_n \to A_n'$ inductively on the constructions of \tilde{B} and \tilde{B}'. Since each $f_n: A_n \to A_n'$ is a cellular map, the composition of a cellular map $\alpha: S^{n-1} \to A_n'$ with $f_{n-1}: A_{n-1} \to A_{n-1}'$ is also cellular, and so we have an induced map $f_n: A_n \to A_n'$. Thus, the induction goes through, and we let $\tilde{g}: \tilde{B} \to \tilde{B}'$ be $\text{colim}_n f_n$.

5. Proof of Proposition 2.3

Since we are factorizing the map $\emptyset \to B$, in the sequence $A_{-1} \to A_0 \to A_1 \to \cdots$ whose colimit is \tilde{B} (see Section 3.1) the space A_{-1} is empty. Thus, for each $n \geq 0$ the space A_n is an n-dimensional CW-complex, and so every map $S^n \to A_n$ is a cellular map. Thus, the sequence constructed in Section 4.1 is exactly the same as the sequence constructed in Section 3.1, and so their colimits are the same.
6. **Proof of Theorem 2.4**

We will show by induction that in the diagram

\[\emptyset = A_{-1} \rightarrow A_0 \rightarrow A_1 \rightarrow A_2 \rightarrow \cdots \]

\[\emptyset = A'_{-1} \rightarrow A'_0 \rightarrow A'_1 \rightarrow A'_2 \rightarrow \cdots \]

used to construct \(\tilde{B} \rightarrow \tilde{B}' \), each map \(A_n \rightarrow A'_n \) is an inclusion of a subcomplex. The induction is begun because \(A_0 \) has one point for every point of \(B \) and \(A'_0 \) has one point for every point of \(B' \).

Now assume that \(n > 0 \) and that \(A_{n-1} \rightarrow A'_{n-1} \) is an inclusion of a subcomplex. Since the map \(B \rightarrow B' \) is also an inclusion, the set of \(n \)-cells to be attached to \(A_{n-1} \) is a subset of the set of \(n \)-cells to be attached to \(A'_{n-1} \), and so \(A_n \rightarrow A'_n \) will also be an inclusion of a subcomplex.

7. **The proof of Theorem 2.5**

Let \(X_S = \cap_{s \in S} X_s \).

- Let \(\emptyset = A_{-1} \rightarrow A_0 \rightarrow A_1 \rightarrow \cdots \) be the sequence created in the proof of Theorem 2.4 whose colimit is \(CW(X) \),
- let \(\emptyset = A^S_{-1} \rightarrow A^S_0 \rightarrow A^S_1 \rightarrow \cdots \) be the sequence created in the proof of Theorem 2.4 whose colimit is \(CW(\{X_s\}) \), and
- for each \(s \in S \) let \(\emptyset = A^{s-1} \rightarrow A^S_0 \rightarrow A^S_1 \rightarrow \cdots \) be the sequence created in the proof of Theorem 2.4 whose colimit is \(CW(\{X_s\}) \).

The proof of Theorem 2.4 shows that \(A^S_n \) and \(A^n_s \) are subcomplexes of \(A_n \) for all \(s \in S \) and \(n \geq 0 \); we will show by induction that \(A^S_0 = \cap_{s \in S} A^n_s \) for all \(n \geq 0 \).

Since \(A^S_0 \) is discrete with one point for each point of \(X_S \) and for all \(s \in S \) the space \(A^n_s \) is discrete with one point for each point of \(X_s \), we have \(A^S_0 = \cap_{s \in S} A^n_s \).

Assume now that \(n > 0 \) and \(A^S_{n-1} = \cap_{s \in S} A^n_{s-1} \). The space \(A^n_S \) is constructed by attaching an \(n \)-cell to \(A^n_{n-1} \) for each commutative square

\[S^{n-1} \rightarrow A_n \rightarrow X_s = \cap_{s \in S} X_s \]

Since the maps \(A^S_{n-1} \rightarrow A^n_{n-1} \) and \(X_S \rightarrow X_s \) are inclusions for all \(s \in S \), each such \(n \)-cell corresponds to a unique \(n \)-cell in \(\cap_{s \in S} A^n_s \), i.e., the map \(A^n_S \rightarrow \cap_{s \in S} A^n_s \) is an injection.

To see that the map \(A^n_S \rightarrow \cap_{s \in S} A^n_s \) is a surjection, let

\[S^{n-1} \xrightarrow{\alpha_s} A^n_{s-1} \]

\[D^n \xrightarrow{\beta_s} X_s \]

index \(n \)-cells of the \(A^n_s \) that together define an \(n \)-cell of \(\cap_{s \in S} A^n_s \). Since the maps \(A^n_{n-1} \rightarrow A_{n-1} \) and \(X_s \rightarrow X \) are all inclusions, the compositions \(S^{n-1} \xrightarrow{\alpha_s} A^n_{n-1} \rightarrow \)
\(A_{n-1}\) are all equal and the compositions \(D^n \xrightarrow{\beta_s} X_s \to X\) are all equal, and the diagram

\[
\begin{array}{ccc}
S^{n-1} & \xrightarrow{\alpha_s} & A^n_{n-1} \\
\downarrow & & \downarrow \\
D^n & \xrightarrow{\beta_s} & X_s \\
\downarrow & & \downarrow \\
A_{n-1} & \xrightarrow{} & X
\end{array}
\]

(for any \(s \in S\); the upper and lower compositions are all the same) indexes an \(n\)-cell that was attached to \(A_{n-1}\) when creating \(A_n\). Since the upper composition factors uniquely through \(\cap_s \in S A^n_{n-1}\) and the lower composition factors uniquely through \(X_S = \cap_{s \in S} X_s\), those factorizations index an \(n\)-cell that was attached to \(A^n_{n-1}\) when creating \(A^n_n\), and that \(n\)-cell maps to our \(n\)-cell of \(\cap_s \in S A^n_n\).

References