
Wellesley College
Wellesley College Digital Scholarship and Archive

Faculty Research and Scholarship

2014

Classifications of Computable Structures
Karen Lange
klange2@wellesley.edu

Russell Miller

Rebecca M. Steiner

Follow this and additional works at: http://repository.wellesley.edu/scholarship

This Article is brought to you for free and open access by Wellesley College Digital Scholarship and Archive. It has been accepted for inclusion in
Faculty Research and Scholarship by an authorized administrator of Wellesley College Digital Scholarship and Archive. For more information, please
contact ir@wellesley.edu.

Recommended Citation
Classifications of structures, K. Lange, R. Miller, and R. Steiner, To appear in Notre Dame Journal of Formal Logic.

http://repository.wellesley.edu?utm_source=repository.wellesley.edu%2Fscholarship%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.wellesley.edu/scholarship?utm_source=repository.wellesley.edu%2Fscholarship%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.wellesley.edu/scholarship?utm_source=repository.wellesley.edu%2Fscholarship%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ir@wellesley.edu

Submitted on August 4, 2016 to the Notre Dame Journal of Formal Logic

Volume ??, Number ??,

Classifications of Computable Structures

Karen Lange and Russell Miller

and Rebecca M. Steiner

Abstract Let K be a family of structures, closed under isomorphism,
in a fixed computable language. We consider e↵ective lists of struc-
tures from K such that every structure in K is isomorphic to exactly one
structure on the list. Such a list is called a computable classification of
K, up to isomorphism. Using the technique of Friedberg enumeration,
we show that there is a computable classification of the family of com-
putable algebraic fields, and that with a 00-oracle, we can obtain similar
classifications of the families of computable equivalence structures and
of computable finite-branching trees. However, there is no computable
classification of the latter, nor of the family of computable torsion-free
abelian groups of rank 1, even though these families are both closely
allied with computable algebraic fields.

1 Introduction

Classification of structures up to isomorphism is a common goal in all areas
of mathematics. Here, following work of Goncharov and Knight in [10], we
examine classification questions from the perspective of computable structure
theory. Specifically, we are interested in e↵ective classifications of fixed fam-
ilies of structures. Throughout, we examine families K of computable struc-
tures, closed under isomorphism, in a fixed language. (Recall that a structure
A is computable if the atomic diagram of A, denoted D(A), is computable.
See [1] for general background on computable structure theory.) It is natural
to ask which such families of structures have e↵ective classifications.

Definition 1.1 Let K be a family of computable structures, closed under
isomorphism, in a fixed computable language.

A computable enumeration of K consists of a computable function f such
that, for every n 2 !, f(n) is a computable index of some structure in K (i.e.

2010 Mathematics Subject Classification: Primary 03C57, 03D45
Keywords: Friedberg enumeration, computable structure theory, equivalence structure,
e↵ective classification

1

2 K. Lange, R. Miller, and R.M. Steiner

'f(n) = �D(A) for some A 2 K), and for every A 2 K, there is some n 2 !

such that f(n) is a computable index for a structure M isomorphic to A (i.e.
'f(n) = �D(M) with M

⇠= A).
A computable classification of K is a computable enumeration of K such

that each structure in K is isomorphic to exactly one structure in the enumer-
ation.

(Our notation for partial computable functions 'e and other computability
concepts follows [18].) Many strongly minimal theories provide examples of
families K with computable classifications.

Example 1.2 Each of the following families has a computable classification.

1. Computable algebraically closed fields (either in a fixed characteristic
or over all characteristics).

2. Computable vector spaces over a fixed computable field.
3. Computable successor structures, i.e. models of Th(Z, S) where S is

the successor function on Z.
Goncharov and Knight [10] asked whether computable classifications exist

for other families of structures, and in particular for the family of computable
equivalence structures. (Among families not defined by strongly minimal the-
ories, this family is widely considered to be one of the simplest possible exam-
ples.) Although this question remains open, they answered it for a subfamily
of these structures, in [10, Theorem 5.5].

Theorem 1.3 (Goncharov & Knight [10]) There is a computable classi-
fication of the family of computable equivalence structures with infinitely many
infinite equivalence classes.

Computable classification problems have natural connections to index set
and isomorphism problems for families of computable structures. We refer
the reader to [1] for background on index sets and isomorphism problems and
to [4] for examples.

Definition 1.4 Let K be a family of computable structures, closed under
isomorphism, in a fixed language.
(i) We define the index set of K to be the set I(K) of computable indices for
models in K, i.e.

I(K) = {e 2 ! | (9A 2 K) ['e = �D(A)]}.

If i 2 I(K), let Ai be the (presentation of the) structure in K such that
'i = �D(Ai).
(ii) We call the set

{hi, ji 2 ! | i, j 2 I(K) & Ai
⇠= Aj}

the isomorphism problem of K.

In [10, Prop. 5.8], Goncharov and Knight observed the first statement below
which places a restriction on the existence of computable classifications. We
prove a strong version of the second statement in Corollary 3.3.

Proposition 1.5

1. (Goncharov & Knight [10]) No family K whose isomorphism problem is
⌃1

1-complete and whose index set is hyperarithmetic has a computable
classification, nor even a hyperarithmetic classification.

3

2. For each n 2 !, no family K whose whose index set is �0
n and whose

isomorphism problem is ⌃0
n-complete has a computable classification.

Part 1 of Proposition 1.5 yields many examples of families lacking computable
classifications.

Example 1.6 The following families of computable structures do not have
computable classifications.

1. Graphs
2. Fields
3. Any of the families described by Hirschfeldt, Khoussainov, Shore, and

Slinko in [12], including computable partial orders, lattices, rings,
groups, and integral domains.

In Corollary 3.3, we use an extension of Part 2 of Proposition 1.5 to show
that there is no computable classification of computable torsion-free abelian
groups of rank 1. In contrast, for families K whose isomorphism problem is
⇧0

n-complete (for some n 2 !), the only way we have found to prove that
K has no computable classification is to show that it does not even have a
computable enumeration. This method is used in §4 and §5.1.

1.1 Our methods. Friedberg’s 1958 proof of the existence of a computable enu-
meration of all c.e. sets without repetition [8] provides our main technique
for establishing positive results on classifications. From the perspective of
computable structure theory, Friedberg’s result can be thought of as finding
a computable classification of the ⌃0

1-definable subsets of N, up to equality.
His technique is important in the study of numberings or enumerations, which
has taken place mainly in the former Soviet Union; see for example [7]. Other
researchers have studied whether such enumerations exist for other families
of sets of a given complexity (see for example [11]).

We will apply Friedberg’s approach to prove the existence of certain
e↵ective classifications. In this paper, we focus on four families of com-
putable structures: algebraic fields, torsion-free abelian groups of rank 1,
finite-branching trees, and equivalence structures. Algebraic fields prove to
be tractable using the Friedberg method, and this leads us to consider the
related families of abelian groups and trees. We find Friedberg’s technique
useful for the trees as well, and for computable equivalence structures, but
to apply it there, we need more computational power. Therefore, we rel-
ativize Definition 1.1 to other Turing degrees, in order to develop a fuller
understanding of e↵ective classifications for these families.

Definition 1.7 Let d be a Turing degree and C a subset of !. We say e 2 !

is a C-computable index for a structure A if �C
e = �D(A). A d-computable

classification of K by C-computable indices is a uniformly d-computable enu-
meration of C-computable indices for structures in K such that each structure
in K is represented exactly once in the enumeration up to isomorphism.

In all cases we will consider in this article, either C = ; or C 2 d. That
is, we study d-computable classifications either by computable indices or by
d-computable indices. For us, d will always be of the form 0(n). Notice that
in the definition, when C ⌘T

e
C, a number e may be a C-computable index

for A without being a e
C-computable index for A. However, in this situation,

4 K. Lange, R. Miller, and R.M. Steiner

there are computable total injective functions f and f̃ such that, for every

such e and ẽ, �C
e = �

eC
f(e) and �

eC
ẽ = �C

f̃(ẽ)
. Hence it is reasonable to speak of

d-computable indices without specifying the oracle set in d.

1.2 Families to be studied. We consider algebraic fields in §2, torsion-free abelian
groups in §3, finite-branching trees in §4, and equivalence structures in §5.

1.2.1 Algebraic fields. Since the isomorphism problem for computable fields of
characteristic 0 is ⌃1

1-complete and the index set of such fields is only ⇧0
2,

Proposition 1.5 gives the following result.

Proposition 1.8 There is no hyperarithmetic classification of all computable
fields.

However, when we restrict ourselves to algebraic computable fields, we
fare much better. Recall that a field is algebraic if every element of the field
satisfies a nonzero polynomial over the prime subfield (which is either Q or Fp,
depending on the characteristic of the field). In §2.2, we will use Friedberg’s
method to prove the following theorem.

Theorem 1.9 There is a computable classification of the family of com-
putable algebraic fields.

1.2.2 Torsion-free abelian groups of rank 1. We write TFAb1 for the family of
computable torsion-free abelian groups of rank 1. These are precisely the c.e.
subgroups of a computable presentation of the group (Q,+), which allows us to
enumerate them computably. However, we show that there is no computable
classification ofTFAb1. Indeed, we prove that 0

(n)-computable classifications
of TFAb1 by computable indices exist only for n � 3.

Theorem 1.10 There is no 000-computable classification of TFAb1 by com-
putable indices, but there does exist a 0000-computable classification of TFAb1
by computable indices.

We prove the existence portion of Theorem 1.10 in Lemma 3.4 and the
nonexistence portion in Corollary 3.3.

1.2.3 Finite-branching trees. For our purposes, a tree T is a substructure of the
structure !

<! of all finite strings of natural numbers. The language contains
just a unary function, the predecessor function P , which names the immediate
predecessor of each element (and maps the root to itself). Note that P is
computable on !

<!. To be a tree, T must be nonempty and closed under
P , and to be computable, T must be a computable subset of !

<!. (Our
discussion does not necessarily carry over to computable trees in the language
of partial orders.) Finally, T is finite-branching if, for each x 2 T , the pre-
image of x under P is finite. We use T to denote the family of all computable
finite-branching trees.

Finite-branching trees are algebraic, in the model-theoretic sense of the
word, and have been shown in [19] to have properties very similar to those
of algebraic fields. However, we will show that there is no computable enu-
meration of T , let alone any computable classification of this family. (In fact,
we show more; see Proposition 4.2). On the other hand, in Proposition 4.4
we will use Friedberg’s method to give a classification of T using a 00-oracle,

5

in a way which is not known to be possible for TFAb1. The theorem below
follows from Propositions 4.2, 4.3, and 4.4.

Theorem 1.11 There exists a 0000-computable classification of T by com-
putable indices as well as a 00-computable classification of T by 00-computable
indices. However, no classification of T by computable indices can be 000-
computable.

1.2.4 Equivalence structures. Goncharov and Knight examined computable
equivalence structures in [10], as noted above. (A countable equivalence
structure is simply an equivalence relation on the domain !.) They gave
a computable classification of the family E1 of all computable equivalence
structures that contain infinitely many infinite equivalence classes. The same
problem for the family En of computable equivalence structures with exactly
n infinite classes proves thornier, and we show in §5.1 that there is no com-
putable enumeration (let alone classification) of any family En. However, in
§5.2, we produce a 00-computable classification of E0 using 00-computable
indices, applying Friedberg’s method once again, relativized to a 00-oracle and
starting with a particular 00-computable enumeration of E0. From this result,
we readily produce a 00-computable classification of the entire family E of
all computable equivalence relations, again using 00-computable indices. The
oracle 00 is not particularly powerful so we regard this result as a vindication
of the view that computable equivalence structures, while nontrivial, are not
a particularly complex family of structures.

2 Fields by Friedberg

After discussing some necessary background in §2.1, we give a computable
classification of the family of algebraic fields in §2.2, proving Theorem 1.9.

2.1 Background on fields Recall that the splitting set SF of a computable field
F is the set of reducible polynomials in F [X]. (Formally, it is the set of code
numbers for these polynomials when F [X] is listed out in the canonical way
from the computable presentation of F .) The Turing degree of the splitting
set does not vary between computable presentations of a single algebraic field,
and SF is Turing-equivalent to the root set RF , the set of those polynomials
in F [X] having roots in F . If SF is computable, then F is said to have a
splitting algorithm, and this algorithm allows one to identify the irreducible
polynomials in F [X]. Finally, there is a computable presentation of the alge-
braic closure F of F : this presentation may be given uniformly in an index for
F , as may an index for a computable embedding g : F ! F , and the image
g(F) of F within F is Turing-equivalent to SF . Hence g(F) is computable if
and only if F has a splitting algorithm. All of this follows essentially from
Rabin’s Theorem (see [17]).

We take advantage of the following facts.

Lemma 2.1 For each characteristic p � 0, there is a computable enumera-
tion hFeie2! of all computable algebraic fields of characteristic p.

Proof. Fix a computable presentation Q of the algebraic closure of the prime
field Q (= Q or = Fp) of characteristic p. For each e, let Fe be the subfield
of Q generated by the c.e. set We. Thus, each Fe is itself c.e., uniformly

6 K. Lange, R. Miller, and R.M. Steiner

in e, and the fields Fe form a computable enumeration of all computably
presentable algebraic fields of characteristic p (since every such field has a
computable embedding into Q, with c.e. image). Notice that, while Fe itself
may not be technically a computable field (if its domain, which is c.e., fails
to be computable), it is computably isomorphic to a computable field, just
by taking a 1-1 computable enumeration of its elements and pulling back the
field operations to the domain of this enumeration. Of course, in positive
characteristic, we allow finite computable fields in our enumeration.

The following lemma appears as [16, Corollary 3.9], and also (with a dif-
ferent proof) in [9, Appendix A]. Essentially it follows from König’s Lemma.

Lemma 2.2 Two algebraic fields E and F of characteristic 0 are isomorphic
if and only if, for all finitely generated algebraic field extensions K of Q, the
field K embeds in E if and only if K embeds in F .

2.2 Friedberg’s Construction We now recast Friedberg’s construction of a clas-
sification of all c.e. sets in terms of classifying some family of d-computably
presentable structures of a given kind. We then apply this construction to
computable algebraic fields.

Given a structure M with domain ✓ !, we let M�s be the substructure of
M generated by the elements {0, 1, . . . , s� 1} \ dom(M) under the function
symbols in the language. Since we allow function symbols, M� s need not
be finite. In general its domain may only be computably enumerable, but
we treat it as an M-computable structure, since we get an M-computable
isomorphism from each M�s onto a computable structure, uniformly in s, by
mapping an initial segment of ! onto the domain of M�s. We do specifically
allow M to have finite domain; this is important when dealing with fields in
positive characteristic, and also for equivalence structures in §5.2. We also say
Mi�s is a proper substructure of Mj� t if the former embeds into the latter but
they are not isomorphic. (An embedding is just an injective homomorphism.)

Theorem 2.3 Let d be a Turing degree, and K a family of structures, closed
under isomorphism, in a fixed d-computable language. Suppose there exists a
d-computable enumeration hMiii2! of K by d-computable indices satisfying
the following conditions.

1. For each Mi and each stage s,
(a) Mi�s is an element of K and
(b) there is some t > s and j 2 ! such that

• Mi�s is a proper substructure of Mj� t and
• for all k < s, Mj� t is not isomorphic to Mk�s.

2. (a) For every two indices i and j, Mi
⇠= Mj i↵ i and j satisfy:

(8s)(9t) [Mi�s embeds into Mj� t & Mj�s embeds into Mi� t].
(b) The following two sets are both d-computable.

{hi, t, j, si : Mi� t ⇠= Mj�s}
{hi, t, j, si : Mi� t embeds into Mj�s}

Thus, the isomorphism problem and the proper substructure prob-
lem for any two structures Mi� t and Mj�s are d-computable.

7

Then there is a d-computable classification by d-computable indices of the
structures in K.

Proof. Let hMiii2! be a d-computable enumeration of all structures in a fam-
ilyK by d-computable indices satisfying the assumptions listed in the theorem.
We construct a d-computable classification hNiii2! by d-computable indices
of the structures in K by employing Friedberg’s method. For the reader’s
convenience, we imitate Friedberg’s original construction in [8, Thm. 3] as
closely as possible. In particular, at times we will assign Nk to be a follower
of some Mi. At stages s when Nk is following Mi we construct Nk,s to be
isomorphic to Mi� s. If at any point we release Nk as a follower of Mi, we
call Nk free and Nk will never again be assigned to follow any other Mj .
However, Mi can be assigned a new follower at a later stage. By Assumption
(1a), for all j 2 !, the structure Mj�0 generated by the empty set lies in K;
we consider in Corollary 2.7 below how to amend this assumption. At each
stage s, we take action for some Mi. We let es denote the index i of the
Mi for which we take action at stage s. Specifically, we set es equal to the
number of prime factors of s. This definition ensures that we take action for
each Me at infinitely many stages during the construction.

Assumptions (2a) and (2b) imply that Mi and Mj being isomorphic is
a ⇧d

2 -property. In particular, we may define a d-computable chip function
c(i, j, s) as follows:

c(i, j, s) =

8
>>>>>><

>>>>>>:

0 if s = 0.

c(i, j, s� 1) + 1 if Mi� t embeds into Mj�s and

Mj� t embeds into Mi�s,
where t = c(i, j, s� 1), s > 0.

c(i, j, s� 1) otherwise.

In other words, c(i, j, s) “gives a chip” to the pair (i, j) at stage s (i.e.
outputs c(i, j, s) = c(i, j, s� 1) + 1) if and only if the stage t approximations
of Mi and Mj embed into each other’s stage s approximations, where t is
the total number of chips received by the pair (i, j) at all stages less than s.
This definition is symmetric in i and j, and the pair (i, j) receives infinitely
many chips (over all stages s) if and only if Mi

⇠= Mj .
We will see by induction that the construction satisfies the following as-

sumption: that for each stage t < s and each Ni (which may be a follower or
free at stage t), we d-computably know a d-computable index e

0 and stage t

0

such that Ni,t
⇠= Me0� t0. Hence, by Assumption (2b), it is d-computable to

determine whether a given Ni,t is isomorphic to a given Mê� t̂. We may also
inductively assume that the current follower Nk for Mes at the beginning of
stage s, if any, satisfies Nk,t = Nk,s�1

⇠= Mes � t for some t < s. (In other
words, Nk has not changed since stage t.)

At stage s, having fixed es, we have three cases.
Case 1 (Mes with follower appears isomorphic to earlier Me.)
Suppose that Mes has a follower Nk and that there exists an e < es with
c(e, es, s) � k. Then we release Nk as a follower of Mes .
Case 2 (For some k with additional properties, Nk,s�1

⇠= Mes�s.)

8 K. Lange, R. Miller, and R.M. Steiner

If Case 1 does not hold, and there exists a k such that Nk,s�1
⇠= Mes � s

with one of the following properties:

• Nk is the follower of Me for some e  es; or
• Nk is not currently a follower of any Me, and either k  es or Nk was
previously displaced by Mes via Case 3,

then we do nothing.
Case 3 (Case 1 and Case 2 do not hold.). If Case 1 and Case 2 do not
hold, we execute the following three steps.

1. (Ensure Mes has a follower.)
If Mes has no follower, assign Nk to follow Mes where k is the least
index for which Nk has never yet been a follower, and build Nk,s iso-
morphic to Mes�s.

2. (Update any existing follower for Mes .)
If Mes already had a follower Nk at stage (s � 1), then add elements
to Nk,s�1 as needed so that Nk,s

⇠= Mes� s. (This is possible by our
second inductive hypothesis. Specifically, Nk satisfied Nk,t

⇠= Mes � t
at the most recent stage t < s with et = es and has not changed since
then.)

Steps 1 and 2 together ensure that Nk,s
⇠= Mes � s, no matter

whether Nk was previously a follower of Me or not.
3. (Some Nk0,s�1 besides Mes’s follower is isomorphic to Mes�s.)

Suppose there is some k

0
6= k such that Nk0,s�1

⇠= Mes� s. In this
case, we release this k

0 from being the follower of any Me0 for which
it was a follower at stage (s � 1), and (whether it was released here
or previously) we say that k0 has been displaced by Mes at this stage.
Since Case 2 did not apply, if Nk0 is was a follower of some Me0 at this
stage, then e

0
> es; while, if not, then k

0
> es and this is the first time

k

0 has been displaced by Mes . By Assumption (1b), there is a stage
t

0
> s and some Mj , which we can find with our d-oracle, such that:
• Nk0,s�1

⇠= Mes�s is a proper substructure of Mj� t0 and
• for all i < s, Mj� t0 is not isomorphic to Mi�s.

We add elements to Nk0 to make Nk0,s
⇠= Mj� t0.

(If there were more than one such k

0
6= k, these instructions for Step

3 would have us repeat the process again for each such k

0. In fact,
though, this step ensures that all Nk,s are pairwise nonisomorphic, for
all k which have been chosen as followers up to this stage. So, by
induction on the preceding stages, there will be at most one such k

0.
The induction continues since Case 3 is the only case that changes
followers and Step 3 ensures Nk,s 6

⇠= Nk0,s.)

This ends stage s, and the construction is now complete. Also, the inductive
hypotheses stated earlier are now clear.

We follow Friedberg’s argument to show that the d-computable enumera-
tion hNiii2! thus produced is in fact a classification of the entire family K of
structures. Clearly it is a d-computable enumeration of structures.

Lemma 2.4 If Me 6

⇠= Mi for all i < e, then there exists some k with
Nk

⇠= Me.

9

Proof. We follow Friedberg [8, Lemma 3, p. 313]. Fix c = maxi<e lims c(e, i, s),
which must be finite. Then no follower Nk of Me with k > c will ever be
released by the action of Step 1, and so there are only finitely many stages at
which Me loses a follower in this way. A follower of Me may also be released
by the action of Case 3 for some es < e. We claim that there are only finitely
many stages s at which a follower of Me is released by the action of Case 3
for any es < e. If not, there are infinitely many such stages t0 < t1 < t2 < . . .

for a single e

0 = es < e. For all i 2 !, let Nki be the follower of Me at stage
ti � 1 such that Nki,ti�1

⇠= Me0 � ti. Since Nki,ti�1 is a follower of Me, we
have that Nki,ti�1

⇠= Me� t̃i for some t̃i satisfying ti�1 < t̃i < ti for all i > 0.
Thus, Me0 � ti ⇠= Me� t̃i for all i > 0, and Me

⇠= Me0 by Assumption (2a).
This contradicts the lemma’s hypothesis, so there is some stage s0 after which
Me never loses a follower. If at any stage s > s0 with es = e we reach Case
3, then Me will thereafter have a follower k which it never loses. From then
on, whenever Me� (t + 1) 6⇠= Me� t, if Case 3 applies at the next stage s > t

with es = e, Step 2 of Case 3 will add elements to Nk to make Nk,s
⇠= Me�s

again, whereas no other elements will ever be added to Nk at any other stage.
Thus, if Case 3 occurs infinitely often with es = e, then Nk

⇠= Me.
If Case 3 occurs only finitely often with es = e, then Case 2 occurs at

infinitely many stages instead. (Case 1 would cause Nk to be released, which
will never happen.) At each such stage, there is some k0 with Nk0,s�1

⇠= Me�s,
satisfying one of the disjuncts of Case 2. In particular, either Nk0 is a follower
of some Mi with i < e, Nk0 is not a follower and k

0
 e, or Me previously

displaced Nk0 in Case 3. We first argue that there are only finitely many k

0

such that Nk0,s�1
⇠= Me�s is a follower of some Mi with i < e at the stages

when Case 2 occurs with es = e. Suppose otherwise. Let e0 < e be the least
index for which there are infinitely many such k

0. Consider k0 < k1 < k2 < . . .

and stages t0 < t1 < t2 < . . . after s0 where Nki is following Me0 at stage ti,
eti = e, and Nki,ti�1

⇠= Me� ti. Now, Nki,ti�1
⇠= Me0� t̃i for some t̃i such that

ti�1 < t̃i < ti for i > 0. Thus, Me0� t̃i ⇠= Nki,ti�1
⇠= Me� ti for all i > 0. By

Assumption (2a), we have Me0
⇠= Me, contradicting the lemma’s hypothesis.

By the above claim and the fact that Me only executed Case 3 at finitely
many stages, there are only finitely many k

0 for which any of these conditions
could hold. Therefore, one of those k

0 satisfies Nk0,s�1
⇠= Me� s at infinitely

many stages s, and therefore Nk0 ⇠= Me.

Lemma 2.4 and the construction now imply that every Nk eventually be-
comes a follower of an Me, at least temporarily, just as shown in the proof in
[8]. We also now imitate Lemmas 4 and 5 from that proof ([8, p. 315]). We
say that Nk is finitely generated if there exists some t such that Nk,t = Nk,
i.e. Nk = Mj�s for some j, s 2 !.

Lemma 2.5 If k 6= k

0 and Nk and Nk0 are both finitely generated, then
Nk 6

⇠= Nk0 .

Proof. By assumption, there exist t and t

0 such that Nk,t = Nk and
Nk0,t0 = Nk0 . Moreover, we saw above that each must eventually become a
follower, say of Me and Me0 , respectively. Now consider the first stage s such
that Nk = Nk,s

⇠= Nk0,s = Nk0 (and such that k and k

0 have both become
followers by stage s). Either one of k and k

0 became a follower at this stage,

10 K. Lange, R. Miller, and R.M. Steiner

or else the congruence arose because elements were added to one of Nk or
Nk0 at this stage. Therefore, we must been in Case 3 at stage s, and will
have executed Step 3 at this stage. Without loss of generality assume that
es = e. Then steps 1 and 2 ensured that Nk,s

⇠= Me� s. If Nk0,s�1 6

⇠= Me� s,
then no elements would have been added to Nk0 at stage s, contradicting
Nk0,s

⇠= Nk,s. Therefore, Nk0,s�1
⇠= Me�s, so we executed Step 3 for this k0,

placing new elements in Nk,s so that Nk0,s
⇠= Mj� t0 6⇠= Me�s, using the j and

t

0 found at that step. Thus Nk0,s 6

⇠= Nk,s, contradicting our choice above of
the stage s. So in fact Nk 6

⇠= Nk0 .

Lemma 2.6 If k 6= k

0 and neither Nk nor Nk0 is finitely generated, then
Nk 6

⇠= Nk0 .

Proof. Every Nk eventually becomes a follower of some Me. If it is later
released by Me, then thereafter it is never again a follower, and may be
displaced at most once by each Me0 with e

0
< x and never by any other Me0 .

Hence it is modified only finitely often in all, leaving it finitely generated.
Thus we may assume that neither of Nk and Nk0 is ever released.

Suppose Nk
⇠= Nk0 , and say that they are followers of Me and Me0 , re-

spectively. Without loss of generality, take e < e

0. (Me can have at most
one follower which it never releases, so with k 6= k

0, we have e 6= e

0.) More-
over, in order not to be finitely generated, Nk must undergo Step 2 in Case
3 infinitely often, as must Nk0 , and therefore Me

⇠= Nk
⇠= Nk0 ⇠= Me0 . But

then c(e, e0, s) ! 1 as s ! 1, so there must exist a stage s with es = e

0 at
which c(e, e0, s) � k

0, and at this stage Case 1 will cause Nk0 to be released
as a follower of Me0 , yielding a contradiction.

Of course, Nk 6

⇠= Nk0 whenever just one of Nk and Nk0 is finitely gener-
ated, and so the two preceding lemmas show hNkik2! to be one-to-one up to
isomorphism. Lemma 2.4 then shows it to be a d-computable classification of
K by d-computable indices.

To see that Theorem 2.3 applies to the family K of all computable algebraic
field extensions of the prime field Q of characteristic p, we simply use the facts
already stated about such fields. Lemma 2.1 gives a computable enumeration
of K. Every subfield of a field in K is also in K, so Assumption (1a) holds.
For Assumption (1b), given the finitely generated fields Mk� s for all k < s,
fix some prime number d 6= p which is greater than the dimension of each
of these fields over Q, and adjoin a d-th root of unity to Mi � s to get a
computably presentable, finitely generated subfield of Q. Some Mj in our
enumeration of fields must be isomorphic to this subfield, and some t satisfies
Mj � t = Mj (in fact, j and t can be found e↵ectively), but by the choice
of d, we know that Mk � s 6

⇠= Mj � t. Finally, the assumptions (2a) and
(2b) are both standard for algebraic fields. Lemma 2.2 establishes (2a). For
(2b), we appeal to Kronecker’s Theorem, from [14], as given in [15, Theorem
2.2], for example: it states that we have splitting algorithms for every finitely
generated subfield F of Q, uniformly in the generators of the subfield. This
means that, given any x 2 Q, one can find the minimal polynomial f(X) of
x over Q and factor f(X) in F [X] e↵ectively; then f has a root in F if and
only if at least one of its factors in F [X] is linear. Given Fi and Fj , we can
find a primitive generator x for Fi and execute this process. Now Fi embeds

11

into Fj if and only if the minimal polynomial of x over Q has a root in Fj , so
the splitting algorithm for Fj tells us whether Fi embeds into Fj . Moreover,
Fi

⇠= Fj if and only if each embeds into the other, so we have a decision
procedure for deciding isomorphism as well. This is all that is required by
Theorem 2.3, so we have proven the existence of a computable classification of
all computable algebraic fields of any fixed charateristic. Finally, our proof is
uniform in the characteristic, and hence also yields a computable classification
of all computable algebraic fields, as claimed in Theorem 1.9.

Theorem 2.3 works well for families of structures, such as fields of a given
characteristic, which have a prime model. The prime model is analogous
to the empty set in the original Friedberg construction. Since our theorem
requires that every Mi�0 lie in the family K, however, it is awkward to apply
it to families with no prime model. One solution is to consider the empty
structure as an element of such a family. In general, though, this di�culty
can be avoided by a slight modification to the proof of the theorem.

Corollary 2.7 Let d, K, and hMiii2! satisfy all the hypotheses of Theorem
2.3, except that in Assumption (1a), we only require that each Mi�(s+ 1) lie
in K. Then the conclusion still holds: there exists a d-computable classifica-
tion of K by d-computable indices.

Proof. We simply regard every Mi� 0 as empty, and likewise regard Nk,s as
empty for every stage s at which Nk has not yet been chosen as a follower of
any Me. Every Nk is eventually chosen as a follower, and when it is (in Case
3, at some stage s > 0), the construction sets Nk,s

⇠= Mes�s, which lies in K.
Therefore, no Nk winds up empty, and the rest of the proof proceeds exactly
as for Theorem 2.3.

3 Torsion-Free Abelian Groups of Rank 1

The construction of Theorem 2.3 does not apply to the family T of computable
finite-branching trees, nor to the family TFAb1 of torsion-free abelian groups
of rank 1, and its failure to do so demonstrates the sharpness of the conditions
given in the theorem. For the trees, we will see in Proposition 4.2 that there
is no computable enumeration of the computable finite-branching trees (anal-
ogous to {Fn : n 2 !} above for fields), so there is certainly no computable
classification, even though the other hypotheses of Theorem 2.3 hold. (In par-
ticular, the isomorphism problem is exactly the same as for algebraic fields.)
For TFAb1, Proposition 3.1 gives a computable enumeration, yet Corollary
3.3 below implies that there is no computable classification of TFAb1. Here
Theorem 2.3 does not apply since the isomorphism problem is no longer ⇧0

2

(see Lemma 3.2): we do not have any nice way of comparing two such groups
and guessing whether they are isomorphic. In this section we prove these
results for TFAb1.

Proposition 3.1 There is a computable enumeration of the family TFAb1
of all computable torsion-free abelian groups of rank 1.

Proof. The proof is similar to the argument in Lemma 2.1 for algebraic fields.
We fix a computable presentation of the additive group (Q, 0,+) and list out
the subgroups generated by each c.e. subset We of its domain.

12 K. Lange, R. Miller, and R.M. Steiner

The following lemma of Calvert [2, Theorem 2.4.3] established that the
isomorphism problem for torsion-free abelian groups of any fixed finite rank
is ⌃0

3-complete.

Lemma 3.2 (Calvert) The isomorphism problem E for TFAb1 is ⌃0
3-

complete under m-reducibility.

For the next Corollary, it may be useful to review Definition 1.7.

Corollary 3.3 There is no 000-computable classification of TFAb1 by com-
putable indices.

Proof. To prove this, we establish a strong version of the second part of Propo-
sition 1.5, stating that, for each n 2 !, no family K of computable structures,
closed under isomorphism, whose isomorphism problem is ⌃0

n-complete and
whose index set is �0

n has a 0(n�1)-computable classification by computable
indices.

Suppose that f were a 0(n�1)-computable total function classifying K by
computable indices. Then, with a 0(n�1)-oracle, we could decide the isomor-
phism problem E for K as follows. Given indices i and j, first use the oracle
to check whether they are both indices of elements of K. If so, then use the
oracle to enumerate the ⌃0

n set E until we find numbers a and b such that
(i, f(a)) 2 E and (j, f(b)) 2 E. This must happen, because the image of the
classification f contains an index for a computable copy of each computable
torsion-free abelian group. However, because the image contains only one such
index for each such group, we know that (f(a), f(b)) 2 E i↵ a = b. Therefore,
(i, j) 2 E i↵ a = b, Hence, E would be a �0

n set, a contradiction.
Since the index set of TFAb1 is ⇧0

2 and hence �0
3, Lemma 3.2 then estab-

lishes Corollary 3.3.

Lemma 3.4 There is a 0000-computable classification of TFAb1 by com-
putable indices.

Proof. It is simple to construct such a 0000-computable classification g. A 0000-
oracle can decide both the index set I forTFAb1 and its isomorphism problem
E, since these are ⇧0

2 and ⌃0
3, respectively. So let g(0) be the least element of

I, and for each n, let g(n + 1) be the least element j 2 I with j > g(n) and
(8i < j) (i, j) /2 E. This su�ces. (Indeed, since g is an increasing function,
its image is also 0000-decidable.)

Lemma 3.4 and Corollary 3.3 together prove Theorem 1.10. We are left
with the following natural question, which is answered elsewhere in this article
for all other structures we consider, but remains open for TFAb1.

Question 3.5 Is there a 000-classification of TFAb1 by 000-indices? If so, is
there a 00-classification by 00-indices?

We draw attention to the contrast between Theorem 1.9 and Theorem 1.10.
Algebraic fields and rank-1 torsion-free abelian groups are usually regarded
as highly similar families of structures. In each case, every element x of a
computable model of the structure can be identified e↵ectively up to finitely
many possibilities: in fields, finding the minimal polynomial of x over the
prime subfield accomplishes this, while in groups, having fixed a single non-
identity element z, one finds a nontrivial relation on z and x, expressed as
x = qz for some q 2 Q. Such a relation must exist, since the group has rank 1,

13

and once it is found, x is known to be the unique element satisfying it, since
the group is isomorphic to an additive subgroup of Q. One might suspect that
therefore the groups would be more amenable to classification than the fields,
at least given finitely much information (namely the parameter z). Theorems
1.9 and 1.10 reverse this intuition.

Moreover, in computable structure theory, it is known that these two fam-
ilies have exactly the same possible spectra. Recall the relevant definition.

Definition 3.6 For a countable structure A, the spectrum of A is the set of
all Turing degrees of structures isomorphic to A:

Spec(A) = {deg(B) : B ⇠= A & dom(B) = !}.

(We consider only structures B with domain !, so the degree of B is always a
well-defined concept.)

The following result was proven for TFAb1 by Coles, Downey, and Slaman
in [6], and for algebraic fields by Frolov, Kalimullin, and Miller in [9].

Theorem 3.7 For every set U of Turing degrees, the following are equivalent.

• U is the spectrum of some infinite algebraic field.
• U is the spectrum of some torsion-free abelian group of rank 1.
• There exists a set U ✓ ! for which

U = {d : U is d-computably enumerable}.

However, despite the similarities between the families of algebraic fields
and torsion-free abelian groups, their classification problems (for computable
structures) turned out to be of significantly di↵erent complexity: we found
a computable classification of all computable algebraic fields, whereas, using
computable indices, TFAb1 has only a 0000-computable classification.

4 Finite-Branching Trees

Recall that T is the class of all computable finite-branching trees, under the
function P which maps each node in a tree to its immediate predecessor. (By
convention, P maps the root of a tree to itself.) It is often simplest to view a
finite-branching tree just as a tree in which each level has only finitely many
nodes. Nevertheless, the usual definition of finite-branching (that each node
has only finitely many immediate successors) has the least possible complexity,
as we now show.

Lemma 4.1 The index set I for the family T is ⇧0
3-complete.

Proof. To see that I is ⇧0
3, notice that the partial computable function 'e is

the predecessor function for a finite-branching tree with domain ! if and only
if the following all hold.

• 'e is total.
• There is a unique r for which 'e(r) = r.
• For every x 2 !, there exists an l such that '

l
e(x) = '

l+1
e (x). (This

means that, for the least such l, the l-th predecessor 'l
e(x) of x is the

root, so that x lies at the level l of the tree.)
• For every l 2 !, there are only finitely many x 2 ! with '

l
e(x) = '

l+1
e (x).

(This says that the tree has only finitely many nodes at each level l,
which is equivalent to being finite-branching.)

14 K. Lange, R. Miller, and R.M. Steiner

One can also check, using only a 000-oracle, whether 'e has finite domain and
computes a tree on that domain. Therefore the set I (even including indices
of finite trees) is ⇧0

3.
To show that I is ⇧0

3-complete underm-reducibility, we give anm-reduction
from the complement of Cof to I. Given any index e 2 !, build the com-
putable tree Te with root 0 as follows. At stage s, let the least fresh element
of ! lie at level s+1 in Te, with the least node at level s as its immediate pre-
decessor. Then, if the n-th smallest element of the complement of We,s lies in
the set We,s+1, add a new node to level n+1 of Te, with the least node at level
n as its immediate predecessor. This is the entire construction. If e 2 Cof,
then for n = |We|, the (n + 1)-st smallest element of We,s entered We,s+1 at
infinitely many stages s, and therefore Te is infinite-branching, with infinitely
many nodes at level (n + 2). On the other hand, if e /2 Cof, then for every
n, the (n+ 1)-st level of Te only received a new node at finitely many stages,
and so Te is finite-branching. Thus we have the necessary m-reduction.

Proposition 4.2 There is no 000-computable enumeration of all computable
finite-branching trees by computable indices.

Proof. First note that the isomorphism problem E for computable finite-
branching trees is ⇧0

2, since two finite-branching trees are isomorphic if and
only if every finite subtree of each one embeds into the other. (For details,
see [19].) Moreover, the same statement holds of any two computable trees
under predecessor, provided only that at least one of them is finite-branching.
Suppose S is a finite-branching tree and T is an infinite-branching tree. Then
we can choose the least infinite-branching node x 2 T , say at level l, and
consider the finite subtree consisting of x, its predecessors, and (a + 1) of
its immediate successors, where a is the number of nodes at level (l + 1) in
the finite-branching tree S. Clearly this finite subtree of T cannot embed
into S (recalling that an embedding must map the root to the root), and so
the ⇧0

2 condition fails for this pair (S, T). (The ⇧0
2 condition can hold for

non-isomorphic S and T when both are infinite-branching.)
With this information we can show that the existence of such an enumera-

tion f would force the index set I of the family of computable finite-branching
trees to be ⌃0

3. Indeed, an index e would lie in I if and only if 'e computes
a tree Te under predecessor, either with domain ! or with finite domain (all
of which is 000-decidable), and there exists some n 2 ! such that every finite
subtree of each of Te and Tf(n) embeds into the other (which is ⌃0

3, including
the quantifier (9n)). Indeed, since Tf(n) is known to be finite-branching, the
preceding paragraph shows that Te

⇠= Tf(n) if and only if the ⇧0
2 condition on

embedding of finite subtrees holds; conversely, if Te really is finite-branching,
then it must be isomorphic to some Tf(n). Thus I would be ⌃0

3, contrary to
Lemma 4.1.

Theorem 1.11 follows from Proposition 4.2 along with the next results.

Proposition 4.3 There exists a 0000-computable classification of all com-
putable finite-branching trees by computable indices.

Proof. The 0000-classification f is readily given: f(n) is the least m > f(n�1)
(or the least m � 0, if n = 0) such that m lies in the index set for computable
finite-branching trees and, for all k < n, the tree T computed by 'm is

15

not isomorphic to that computed by 'f(k). Lemma 4.1 shows that the first
part of this is a ⇧0

3 condition, hence decidable by our 0000-oracle, and the
isomorphism problem for these trees is ⇧0

2, as discussed in Proposition 4.2. In
fact, the image of this classification function f is �0

4, since f itself is strictly
increasing.

Finally, we apply Friedberg’s method (as adapted in Theorem 2.3) to give
a simpler classification of the finite-branching computable trees: this classifi-
cation requires only a 00-oracle, but uses 00-computable indices.

Proposition 4.4 There exists a 00-computable classification of the family T

of all computably presentable finite-branching trees by 00-computable indices.

Proof. In order to fulfill the hypotheses of Theorem 2.3, we first give a 00-
computable enumeration g of T by 00-computable indices. For each e, let
g(e) be an index for the 00-computable tree Te defined as follows, with root
0. Use the oracle to ask whether 'e has a fixed point r, and, if so, whether it
is unique (i.e. ask whether 8x8s('e,s(x) #= x =) x = r)). If not, then Te

consists just of its root 0. If so, then, using the oracle, check that 'e(0)#, and
search for an m such that no element greater than m has r as a predecessor
(i.e. ask whether (8s8x > m)(¬'e,s(x)#= r)). If 'e(0)", or if we never find
such an m, then again Te will consist only of the root. Otherwise, having
found m, we add one node at level one to Te for each x  m with x 6= r

and 'e(x) #= r (which our oracle can check). Thus we have a one-to-one
correspondence between the nodes at level 1 in Te and those at level 1 in the
tree Se (if any) computed by 'e, provided that Se is finite-branching at its
root. This completes level 1 in Te.

Next, we repeat the process at level 1. Provided 'e(1)#, we assign to each
individual node at level 1 in Te one of the nodes at level 1 in Se and repeat
this process with that node in place of the root. We then repeat this process
(unless it terminates) at each level. Of course, if 'e computes a tree Se which
is not finite-branching, then our Te will be a finite tree. (Also, if 'e is not total
or fails to compute a tree, then again our Te will be a finite tree.) However,
if Se is a finite-branching tree with domain !, then Te not only will also be a
finite-branching tree, but will in fact be isomorphic to Se.

Finally, notice that if Se is a tree with domain {0, . . . , n}, then this pro-
cess will build Te isomorphic to Se, stopping when it finds that 'e(n + 1) ".
Therefore, every finite tree appears on our list. So the set {Te}e2!, given by a
00-computable list of indices for 00-computable trees, includes a presentation
of every computable finite-branching tree, yet includes only trees which are
isomorphic to computable finite-branching trees.

The remaining assumptions of Theorem 2.3 are readily seen to hold. The
restriction Ti� s of any Ti in the enumeration is actually already downward
closed and is an element of T . Given s, let h be the maximum of the heights
of all trees Tk � s with k < s. Given i and s, find some j and t such that
Tj � t contains a node at height (h + 1) and Ti� s embeds into Tj � t. This j

and t establish Assumption (1b) of Theorem 2.3. Assumption (2a) is already
known to hold of finite-branching trees (see e.g. [19]). In Assumption (2b),
the trees Ti� t and Tj�s are both finite (and the size of the domain of each is
00-computable). So it is simple to check using 00 whether they are isomorphic

16 K. Lange, R. Miller, and R.M. Steiner

and whether the first embeds into the second. Therefore, Theorem 2.3 yields
a 00-computable classification of the family T by 00-computable indices.

5 Computable Equivalence Structures

An equivalence structure is simply an equivalence relation E on a given domain
D. For an equivalence structure to be computable, we require D to be an
initial segment of !, and E a computable subset of ! ⇥ !. Notice that this
definition specifically allows finite equivalence structures. We normally write
[x]E for the E-equivalence class containing the element x of the domain.

The principal distinction among equivalence structures arises from the
number of infinite equivalence classes defined by the relation E. We denote
the family of those computable equivalence structures containing exactly n

infinite equivalence classes by En (for each n 2 !). The finite equivalence
structures (with domain an initial segment of !) are all included in E0, and
we specifically include the empty structure in E0.

5.1 Classifications by computable indices. Recall Theorem 1.3 of Goncharov and
Knight, which states that there exists a computable classification of the family
E1 of computable equivalence structures with infinitely many infinite equiv-
alence classes. Our approach is to study the possibility of classifying E0. A
classification of E0 would yield a classification of En, for each n < !, because
each structure in En is the disjoint union (in a unique way) of a structure
containing n infinite classes (and nothing else) with a structure containing no
infinite equivalence classes. Putting this together with Theorem 1.3 would
yield a classification of the family E of all computable equivalence structures.

Lemma 5.1 The isomorphism problem for the family E0 of computable equiv-
alence structures with no infinite classes is ⇧0

3-complete.

Proof. To see that the isomorphism problem is ⇧0
3, notice that the equivalence

relations Ei and Ej on ! computed by 'i and 'j are isomorphic if and only
if i and j lie in the index set for E0 (which is readily seen to be ⇧0

3) and,
for every n and k, each one has at least n classes of size exactly k if and
only if the other does. For a given element to lie in a class of size exactly
k is 00-decidable, since there are no infinite classes. So the given condition
is that, for every k and all pairwise-Ei-inequivalent x1, . . . , xn, there exist
pairwise-Ej-inequivalent y1, . . . , yn such that

(every [xm]Ei has size k) =) (every [ym]Ej has size k),

along with the same statement with i and j reversed. This is ⇧0
3.

For each input e, we build a pair of computable equivalence structures Ee

and Fe, uniformly in e. Neither Ee nor Fe will have any infinite equivalence
classes, and Ee and Fe will be isomorphic i↵ e /2 Cof. This will prove the
lemma.

At stage 0, each of Ee and Fe has one class of each finite size. At stage s+1,
if We,s+1 = We,s, we change nothing. If some (single) element x has entered
We at stage s + 1, fix the n � 0 such that the complement W e,s contained
exactly n elements < x. By induction, Ee and Fe each contain exactly one
class of size 2n+1, and contain the same number of classes of size 2n+2. We
add 2n+2 new elements to each structure. In Ee, these new elements form a

17

new class of size 2n+ 2. In Fe, one of these elements is added to the unique
class of size 2n+1, forming a new class of size 2n+2, and the remaining new
elements form a new class of size 2n+ 1. This is the entire construction.

Now if e 2 Cof, then for some (minimal) n, there are infinitely many
stages s + 1 at which the (n + 1)-th smallest element of W e,s enters We,s+1.
Consequently, Fe has no class of size 2n+ 1, since every Fe-class with 2n+ 1
elements eventually receives another element. However, the original Ee-class
of size 2n+ 1 never receives any more elements, and so Ee 6

⇠= Fe. Conversely,
if e /2 Cof, then for every n there is a stage s such that none of the (n + 1)
smallest elements of W e,s ever enters We, and so the Fe-class with 2n + 1
elements as of stage s never acquires any more elements. Thus Fe has exactly
one class with 2n+1 elements, as does Ee. Moreover, as of stage s, they have
the same number of classes of size 2n + 2, and those classes never change at
any subsequent stage. This holds for every n, so Ee

⇠= Fe in this case, proving
the lemma.

In this proof we remarked that the index set for E0 is ⇧0
3. In fact, it is

complete at this level.

Lemma 5.2 The index set for the family E0 of computable equivalence struc-
tures with no infinite classes is ⇧0

3-complete.

Proof. Fix any e 2 !. As with Lemma 5.1, we consider the “markers” on the
complement of We at each stage as we build the equivalence relation Ee. At
each stage s, we add one new element xs to Ee, in a new Ee-class. Also, if
the n-th marker moved at stage s (and n is minimal with this property), then
we add another new element to Ee, in the Ee-class of xn. (This assumes that
We is enumerated so that, at stage s, no x � s enters We; thus xn must be
defined at this stage.) This is the entire construction.

Now if e 2 Cof, fix the least n such that the n-th marker moves at infinitely
many stages. Then xn lies in an infinite Ee-class, and so the index of Ee is
not in the index set for computable equivalence relations with no infinite
equivalence classes. On the other hand, if e /2 Cof, then the index of Ee does
lie in this index set, since for every n there is a stage after which the n-th
marker never moves again, and so the equivalence class of each xn is finite for
every n. Thus we have an m-reduction from Cof to the complement of the
index set.

Corollary 5.3 There exists a 0000-computable classification of the computable
equivalence structures with no infinite classes, by computable indices.

Proof. With a 0000-oracle, for each n, we may compute the least number f(n)
such that:

• f(n) > f(n� 1) or n = 0; and
• f(n) lies in the index set from Lemma 5.2; and
• for all m < n, hf(m), f(n)i does not lie in the isomorphism problem
from Lemma 5.1.

Not only is this f the required classification, but it is also strictly increasing,
so its image is 0000-computable.

Corollary 5.4 There exists a 0000-computable classification of all computable
equivalence structures by computable indices.

18 K. Lange, R. Miller, and R.M. Steiner

Proof. Let g0 be the computable function from Theorem 1.3, classifying all
computable equivalence relations with infinitely many infinite classes. Let f

be the classification given in Corollary 5.3, and, for each n > 0, define gn(x)
to be the index of a computable equivalence structure which, on the even
numbers, builds an isomorphic copy of the equivalence structure given by the
index f(x), and partitions the odd numbers into exactly (n � 1) equivalence
classes, all infinite. (For the special case n = 1, g1(x) uses all of !, not just
the even numbers, to build the equivalence relation given by f(x).) Finally,
we define g(hn, xi) = gn(x), giving a 0000-computable classification g of all
computable equivalence structures by computable indices.

In their research leading to this article, the authors proved that for each
finite nonempty subset S ✓ !, there is no computable enumeration of the
family ES = [n2SEn. However, instead of that proof, we present the proof of
a stronger result, recently established by Harrison-Trainor, Melnikov, Mon-
talbán, and one of us.

Theorem 5.5 (Harrison-Trainor, Melnikov, Miller, Montalbán) For
every nonempty subset S ✓ !, there is no computable enumeration of the
family ES = [n2SEn of all computable equivalence structures Ei in which the
number of infinite equivalence classes is an element of S. Hence, there is no
computable classification of any such ES.

The notation here leads to some possibility of confusion. The family E!,
with S = !, is defined here as the family of those computable equivalence
structures with only finitely many infinite classes; this family should not be
confused with E1, which is precisely its complement in E . Every ES in this
theorem is disjoint from E1.

Proof. Suppose that E0, E1, E2, . . . is a computable enumeration of some
ES . We will produce a computable equivalence structure E 2 ES that is not
isomorphic to any of these Ee, thereby proving the theorem. The construction
of our E from the given enumeration is uniform, except we fix one number
a 2 S. Below we will build an E in E0 which has arbitrarily large finite
classes, but also satisfies the following requirements Re for every e 2 !:

Re: If Ee has arbitrarily large finite classes, then there exists
some k 2 ! such that Ee has a class of size k and E does not.

Now if 0 /2 S, then our E does not satisfy our purpose. However, one then
builds an E

⇤ which has all the same finite classes as E, but also has a-many
infinite classes. This E

⇤ then lies in Ea, hence in ES , and the requirements
Re will then show that the given enumeration failed to list any isomorphic
copy of E⇤, thus proving the theorem.

Our strategy is to start listing the elements of the classes in each Ee. We
begin our basic module against Ee when we find the first element xe,1 in
any of its equivalence classes. It will next require attention if we reach a
stage at which the [xe,1]Ee has at least two elements and a new element xe,2

has appeared with hxe,2, xe,1i /2 Ee. After that, it requires attention at the
next stage (if any) at which [xe,1]Ee has at least three elements, [xe,2]Ee has at
least two, and a new xe,3 has appeared that lies in neither of these classes. We

19

continue in the same fashion forever, claiming that Re will require attention
at only finitely many stages. Indeed, by hypothesis, only finitely many of
these Ee-classes are infinite, so eventually some xe,i will be found that lies in
a finite class (or else Ee consists of finitely many infinite classes and nothing
else, in which case, for some i 2 !, no xe,i ever appears). After that, Re

will require attention at most once each time the class [xe,i]Ee expands, hence
only finitely many more times in total.

Each time Re requires attention, Ee has finitely many equivalence classes
[xe,1]Ee , . . . , [xe,ne]Ee so far, each with finitely many observed elements. We
write ke,j,s for the size of [xe,j]Ee \ {0, 1, . . . , s} at stage s. The construction
then ensures, until the next stage (if any) at which Re requires attention, that
E contains no E-class of any of the sizes ke,0,s, . . . , ke,ne,s. If Re never again
requires attention and Ee has arbitrarily large finite classes, then one of the
classes [xe,i]Ee never again expands, hence contains exactly ke,i,s elements. In
this case Ee cannot be isomorphic to E, since E will have no class of any of
the sizes ke,j,s with j  ne.

We combine the basic modules by a finite-injury process. Every Rd with
d > e will be injured at each stage at which Re receives attention. After that
stage, instead of just waiting for one element xd,1+nd in a new equivalence class
to appear, Rd will watch for an Ed-class [xd,1+nd]Ed to appear which has at
least 2+md elements in it, where md = max{ke,j : e < d, j  ne}. Meanwhile,
E will create a class [yd]E which has exactly 1 +md elements. This class will
help show that E contains arbitrarily large finite classes. However, no class
in E will wind up with infinitely many elements (because of the finite-injury
nature of the argument), and if Ed also has arbitrarily large finite classes,
then after the greatest stage at which it is injured, it will eventually produce
an xd,0 and the diagonalization against Ed will begin.

At stage 0, we set every ne,0 = 0 and every me,0 = 2. We set ye = 2e in
the structure E and make them all E-inequivalent to each other. We leave
all other values undefined at this stage. At the start of stage s + 1, we have
numbers ne,s defined at the preceding stage, and for each e with ne,s > 0 we
have elements xe,1,s, . . . , xe,ne,s,s in Ee and numbers ke,1,s, . . . , ke,ne,s,s. We
define the threshold values: m0,s+1 = 2 and, for each e  s,

me,s+1 = max(me,s, 2 + max{kd,j,s : d < e & j  nd,s}),

with me,s+1 = 2 for all e > s. For each e  s, we add (me,s+1 � me,s) new
elements to [ye]E . (The definition of me,s+1 ensures that me,s+1 � me,s, and
so this step shows that [ye]E has size exactly (me,s+1 � 1) at this stage.)

Now we search for the least e  s satisfying the following conditions:

• there exists some x  s such that [x]Ee \ {0, 1, . . . , s} contains at least
me,s elements and, for all j = 1, . . . , ne,s, we have hx, xe,j,si /2 Ee; and

• for every j = 1, . . . , ne,s, [xe,j,s]Ee \ {0, 1, . . . , s} contains at least
ke,j,s + 1 elements. (These conditions on j are vacuous if ne,s = 0.)

If no such e 2 ! is found, then we do nothing. Otherwise, for the least such
e, requirement Re receives attention, as follows. We define ne,s+1 = 1 + ne,s

(writing n = ne,s+1 hereafter) and set xe,n,s+1 to be the least x witnessing

20 K. Lange, R. Miller, and R.M. Steiner

the first condition above. For each j  n, we let xe,j,s+1 = xe,j,s and reset

ke,j,s+1 = | [xe,j,s+1]Ee \ {0, . . . , s} |,

noting that (by induction and the choice of xe,n,s+1) every ke,j,s+1 � me,s+1.
For every d > e, we reset nd,s+1 = 0, thus injuring Rd. (The threshold value
md,s+1 was defined above and is preserved, but all other values associated to
Rd become undefined at stage s + 1.) The rest of E is unchanged, and we
preserve all values defined for all Rd with d < e. This completes stage s+ 1.

The argument that each Re receives attention at only finitely many stages
proceeds by induction on e. Fixing the least stage s0 such that no requirement
Rd with d < e receives attention at any stage t � s0, we note thatme,s0 = me,s

for all s > s0, and we write m for this permanent threshold value for Re. Now
if Ee has no equivalence classes of size at least m, then Re will never receive
attention again. If Ee does have such a class, then xe,1,s+1 will be defined
at the first stage s at which we observe such a class. Thereafter we keep on
searching for more such classes and for increases in the sizes of the existing
such classes. Notice that, if xe,j,s becomes defined after stage s0 for some
j 2 !, then xe,j,s is never redefined, so we call it xe,j . However, if Re receives
attention at infinitely many stages after s0, then we would have infinitely many
elements xe,1, xe,2, . . ., since a new one is chosen at each such stage. Also, since
each existing equivalence class [xe,j]Ee must expand in order for Re to receive
attention again, every class [xe,j]Ee would be infinite. Therefore, since Ee

has only finitely many infinite classes, there must exist a greatest stage s1 at
which Re receives attention. This completes the induction.

Hence, for each e, the limit me = lims me,s exists. By construction, Re

stops receiving attention because either Ee does not have any finite Ee-classes
of size at least me (hence Re stopped receiving attention once representatives
of all its infinite classes had been discovered), or else some xe,i was cho-
sen (after the final injury to Re) whose equivalence class only expanded at
finitely many subsequent stages (hence [xe,i]Ee is finite). In the latter case,
we (none↵ectively) fix the index i of the xe,i that is the first to have its
Ee-class reach full size. (That is, choose i  ne so that max [xe,i]Ee is as
small as possible.) Therefore, by definition of ke,i,s, the class [xe,i]Ee has size
ke,i = lims ke,i,s � me, and by induction on e and s we know thatme > md for
all d < e. On the other hand, by our choice of i, Re last receives attention at
some stage s > max [xe,i]Ee , and so, for every d > e, md � md,s+1 � 2 + ke,i.
We now show that the E-classes have size exactly (md � 1) for d 2 !. Thus
E contains no class having the same size as [xe,i]Ee , and Re is satisfied.

Every E-class has the form [yd]E , and once chosen, yd is never redefined in
the construction. Moreover, as remarked in the construction, at stage s+1, yd
lies in an E-class of size exactly (md,s+1 � 1). Since each sequence hmd,sis2!

converges to a finite value md and no other E-classes are ever created, it
is clear that the values md � 1 are exactly the final sizes of the equivalence
classes in E. Thus E has only finite equivalence classes, and everyRe holds, as
claimed above. Finally, this result also shows that there are arbitrarily large
finite E-classes, since md < md+1 holds for all d 2 !. So, even if Ee satisfies
Re by virtue of having an upper bound on the size of the finite Ee-classes, we
still see that Ee and E cannot be isomorphic.

21

When one allows the elements of E1 into the enumeration as well, things
become more feasible. In [10, Corollary 5.2], Goncharov and Knight gave
a computable enumeration of E , the family of all computable equivalence
structures (including those with finite domains), simply by enumerating all
c.e. subsets of a computable equivalence structure with infinitely many infinite
classes and no finite classes. There may still exist a computable classification
of E . By Theorem 5.5, if such a classification exists, one would not be able
to partition it e↵ectively into the subfamilies E1 (already e↵ectively classified
by Goncharov and Knight) and E!. Since the isomorphism problem for E

is ⇧0
4-complete (see [3, Theorem 3.13]), Proposition 1.5 (or even the strong

version given in Corollary 3.3) does not apply to E , and so the question of
computable classifiability of E does not yield to any of the methods used in
this article. We regard this question as challenging.

5.2 Oracle classifications. In this section, we show that there is a 00-computable
classification, by 00-computable indices, of the family E of all computable
equivalence structures and other related subfamilies. First, we construct such
a classification for E0, the family of all computable equivalence structures with
no infinite classes. To accomplish this, we will set d to equal the degree 00 and
apply Theorem 2.3. Specifically, we will build a 00-computable enumeration
hFeie2! of E0, in such a way that the isomorphism problem {hi, ji : Fi

⇠= Fj}

is ⇧0
3, and thus ⇧0

2 relative to our oracle, and so that the other hypotheses of
Theorem 2.3 are also satisfied.

To build Fe, we consider the partial computable function 'e, writing Ee

for the binary relation {hx, yi : 'e(hx, yi) #= 1}. With a 00-oracle, we may
enumerate any witnesses which show that 'e fails to compute a (total) equiv-
alence relation on !: either a pair hx, yi for which 'e(hx, yi) ", or pairs that
witness the failure of reflexivity, symmetry, or transitivity.

To start computing Fe below 00, we first set x0 = 0, z0 = 0, and n0 = 1,
and ask our oracle whether there exist two distinct elements of ! (including x0

itself) that are both Ee-equivalent to x0. If not, then z0 = 0 enters dom(Fe)
and forms a singleton class in Fe. If so, then we increment n0 to 2 at stage
s = 1 and ask whether there exist three distinct such elements. This process
continues until either

• we find a witness showing that Ee is not a total equivalence relation
on !, in which case the construction ends here, and Fe is a finite
equivalence relation consisting of the classes already built; or

• we find the least number n0 for which the Ee-class of x0 fails to contain
(n0 + 1) distinct elements. If this happens at stage s, then we set
z1 = z0 + n0 adjoin the numbers z0, . . . , z0 + n0 � 1 to dom(Fe), and
make them all Fe-equivalent to z0, so that z0 now lies in an Fe-class
of size n0 (just as x0 does in Ee). This Fe-class will never grow any
further. (Notice that z1 is not yet in dom(Fe).)

If the second possibility holds, we now continue by finding using 00 the least
x1 > x0 such that (8y < x1)hx1, yi /2 Ee. We run the same process with x1,
potentially finding a number n1 at some stage s as in the second possibility, in
which case we set z2 = z1+n1, and make z1 part of an Fe-class {z1, . . . , z2�1}
of size n1. We continue in this manner through all xt and zt.

22 K. Lange, R. Miller, and R.M. Steiner

Of course, the process above (for a particular xt and zt) could run for
infinitely many stages s, if Ee is a total equivalence relation in which xt is
the least element belonging to an infinite Ee-class. If this happens, then
Fe is exactly the equivalence relation defined by the process, comprising the
finitely many finite classes built before we reached xt. The same happens if
Ee turns out not to be a total equivalence relation. (Indeed, Fe could turn
out to be the empty equivalence structure, with domain ;, for instance if 0
lies in an infinite Ee-class. This is why the empty structure is included in
E0.) On the other hand, if Ee is a total equivalence relation with no infinite
classes, then this process builds Fe

⇠= Ee. In all cases, Fe is an equivalence
relation on an initial segment of ! and is 00-computable uniformly in e. Thus
we have a 00-computable enumeration of 00-indices of E0 (which includes all
finite equivalence relations, even the empty relation.) The domain of each Fe

is 00-computably enumerable uniformly in e, but its size is not. The family of
all these domains, while uniformly c.e. in 00, is not uniformly 00-computable.

Recall Lemmas 5.1 and 5.2, which showed that the isomorphism problem
and the index set for E0 are both ⇧0

3-complete. Since the structures Fe are
only 00-computable, we would expect the isomorphism problem Fi

⇠= Fj to
be ⇧0

3 relative to 00, which is to say, ⇧0
4. However, the construction of the

structures Fe has an additional feature: for each x 2 dom(Fe), the size of the
Fe-class of x is 00-computable. We can exploit this fact to prove the following.

Lemma 5.6 With this construction, the set I = {hi, ji : Fi
⇠= Fj} is ⇧0

3.

Proof. Fixing a 00 oracle, we show that I is ⇧0
2 relative to this oracle. Notice

that, whenever zt+1 is defined in the construction of Fi, the 00-oracle knows
the size nt of [zt]Fi , since no more elements will ever join this class. That
is, the function t 7! nt is partial 00-computable, with domain {t : zt 2 Fe}.
We will write yt instead of zt for elements of the equivalence structure Fj ,
and use mt for the size of [yt]Fj . Then Fi

⇠= Fj i↵, for all finite subsets of
! {u1 < · · · < uk} and all r > 0 such that the construction of Fi defines
nu1 = · · · = nuk = r, there exist v1 < · · · < vk such that the construction of
Fj defines mv1 = · · · = mvk = r, and if the converse statement (with the roles
of Fi and Fj interchanged) also holds. This is ⇧0

2 in the constructions of Fi

and Fj , which are 00-computable uniformly in i and j.

To apply Theorem 2.3, we will expand each structure Fe to an augmented
structure e

Fe in a larger language. e
Fe will still be 00-computable uniformly in

e. The expanded language has unary relation symbols R1, R2, . . . and unary
function symbols f1, f2, . . ., along with the binary relation E from the original
language. Each e

Fe will satisfy the following axioms:

E is an equivalence relation.

(8n) (8x)[Rn(x) () ([x]E contains exactly n elements)].

(8k) (8x) [xEfk(x)].

(8n)(8j  n) (8x)(8y)[(Rn(x) & xEy) =) fj(x) = fj(y)].

(8n)(8j < k  n) (8x)[Rn(x) =) (fj(x) 6= fk(x))].

(8n)(8k > n) (8x)[Rn(x) =) fk(x) = x].

23

These axioms imply that if Rn(x) holds, then f1(x), . . . , fn(x) are precisely
the distinct elements of [x]E and fk(x) = x for all k > n. When we expand
Fe to e

Fe, our 00-oracle knows the (finite) size of the E-class of each z 2 Fe,
hence can decide the unique n for which Rn(z) holds and can find all the
elements of [z]Fe . We define the functions fk, again with a 00-oracle, so that
f1(z) < f2(z) < · · · < fn(z) are the elements of [z]Fe , and with z = fk(z)
for all k > n, as required. This ensures that, if Fi

⇠= Fj , then there exists an

isomorphism from e
Fi onto e

Fj as well. Conversely, of course, an isomorphism

from e
Fi onto e

Fj must restrict to an isomorphism from Fi onto Fj .
The point of these axioms is that now each z 2 Fe generates its own

Fe-equivalence class (and nothing more). We claim that now all hypothe-
ses of Theorem 2.3 are satisfied by the 00-computable enumeration h

e
Feie2!.

Recall that e
Fi � s denotes the substructure of e

Fi generated by the subset
{0, . . . , s� 1} \ dom(eFi). Each e

Fi�s is an element of our enumeration (up to
isomorphism, which is all that is necessary; it would be harmless to expand
the enumeration to include not just every e

Fi but also every e
Fi�s). Moreover,

given any i and s, every e
Fk�s with k < s is a finite equivalence structure (in

our expanded language), and so, to find the j required by Assumption (1b) of
the theorem, we simply form a new e

F by adjoining to e
Fi� s one new equiva-

lence class of size larger than any class in every one of the e
Fk�s. Defining the

Rn and fn on this e
F is easy, and our enumeration must include some e

Fj
⇠= e

F ,

so we pick this j along with t large enough that e
Fj� t = e

Fj . Clearly this j and
t satisfy (1b).

Now suppose that e
Fi and e

Fj have the property that every e
Fi�s embeds into

e
Fj . This simply means that, for every n 2 !, eFj has at least as many Fj-classes

of size exactly n as e
Fi has. If the same holds with i and j reversed, then clearly

Fi
⇠= Fj , and we saw above that this implies e

Fi
⇠= e

Fj . Thus Assumption (2a)
of Theorem 2.3 holds. Also, for any s and t, we can determine from hi, t, j, si

(and our 00-oracle) the exact number of classes of each size n in each of e
Fi� t

and e
Fj� s (as well as an upper bound on the sizes we need to consider, since

for each z 2 dom(eFi)\{0, . . . , t�1} we can find the unique n for which Rn(z)
holds, and likewise for e

Fj). From this information, it is immediate to see

whether e
Fi� t embeds into e

Fj� s (since this just means that the latter has at
least as many classes of each single size as the former), and also whether they
are isomorphic (which is equivalent to each one embedding into the other).

Now Theorem 2.3 yields a 00-computable classification of the (augmented)
structures in the enumeration h

e
Feie2!. This classification is easily stripped

back down to simple equivalence structures once again, without introduc-
ing any new isomorphisms (since Fi

⇠= Fj i↵ e
Fi

⇠= e
Fj). Thus E0 has a 00-

computable classification, by 00-computable indices.
We state this result and use it to show that such classifications also exist

for E and other related subfamilies.

Theorem 5.7 There exists a 00-computable classification, by 00-computable
indices, of the family E0 of all computable equivalence structures with no infi-
nite equivalence classes. Moreover, there also exist such classifications of the

24 K. Lange, R. Miller, and R.M. Steiner

families En, En (for every n 2 !), E! (the family of all computable equiv-
alence structures with only finitely many infinite classes), and E itself, the
family of all computable equivalence structures.

Proof. For E0 this was established above. From the classification for E0, one
immediately can build 00-computable classifications of each En, uniformly in
n, just by adding n-many infinite classes to each member of the classification
of E0. By the uniformity, one gets the classifications of E! and En for every
n 2 !. The 00-computable classification of E itself is obtained by combining
the classification of E! with the computable classification of its complement
E1 given by Theorem 1.3.

References

[1] C. Ash & J.F. Knight; Computable structures and the hyperarithmetical hier-

archy (Amsterdam: North-Holland Publishing Company, 2000).
[2] W. Calvert; Algebraic Structure and Computable Structure, PhD thesis, Uni-

versity of Notre Dame, 2005.
[3] W. Calvert, D. Cenzer, V. Harizanov, & A. Morozov; E↵ective categoricity of

equivalence structures, Ann. Pure Appl. Logic 141 (2006) 1-2, 306–325.
[4] W. Calvert, V. Harizanov, J.F. Knight, & S. Miller; Index sets for computable

structures, Algebra and Logic 45 (2006), 61–78.
[5] W. Calvert & J.F. Knight; Classification from a computable viewpoint, Bulletin

of Symbolic Logic 12 (2006) 2, 191–218.
[6] R.J. Coles, R.G. Downey & T.A. Slaman; Every set has a least jump enumer-

ation, Journal of the London Mathematical Society 62 (2000) 2 641-649.
[7] Yu.L. Ershov; Theorie der Numerierungen, Zeits. Math. Logik Grund. Math.

23 (1977), 289–371.
[8] R.M. Friedberg; Three theorems on recursive enumeration. I. Decomposition.

II. Maximal set. III. Enumeration without duplication, Journal of Symbolic

Logic 23 (1958) 3, 309–316.
[9] A. Frolov, I. Kalimullin, & R. Miller; Spectra of algebraic fields and subfields,

Mathematical Theory and Computational Practice: Fifth Conference on Com-

putability in Europe, CiE 2009, eds. K. Ambos-Spies, B. Löwe, & W. Merkle,
Lecture Notes in Computer Science 5635 (Berlin: Springer-Verlag, 2009), 232–
241. (For Appendix A, see qcpages.qc.cuny.edu/⇠rmiller/research.html.)

[10] S.S. Goncharov & J.F. Knight; Computable structure and non-structure theo-
rems, Algebra and Logic 41 (2002) 6, 351–373.

[11] S.S. Goncharov, S. Lempp, & D.R. Solomon; Friedberg numberings of families
of of n-computably enumerable sets, Algebra and Logic 41 (2002) 2, 81–86.

[12] D.R. Hirschfeldt, B. Khoussainov, R.A. Shore, & A.M. Slinko; Degree spectra
and computable dimensions in algebraic structures, Annals of Pure and Applied

Logic 115 (2002), 71–113.
[13] A. Kach, K. Lange, & D. Solomon; Degrees of orders on torsion-free abelian

groups, Annals of Pure and Applied Logic 164 (2013) 7-8, 822–836.
[14] L. Kronecker; Grundzüge einer arithmetischen Theorie der algebraischen

Größen, J. f. Math. 92 (1882), 1–122.
[15] R. Miller; d-Computable categoricity for algebraic fields, The Journal of Sym-

bolic Logic 74 (2009) 4, 1325–1351.
[16] R. Miller & A. Shlapentokh; Computable categoricity for algebraic fields with

splitting algorithms, to appear in Trans. Amer. Math. Soc.

25

[17] M. Rabin; Computable algebra, general theory, and theory of computable fields,
Transactions of the American Mathematical Society 95 (1960), 341–360.

[18] R.I. Soare; Recursively Enumerable Sets and Degrees (New York: Springer-
Verlag, 1987).

[19] R.M. Steiner; E↵ective algebraicity, Arch. Math. Logic 52 (2013), 91–112.

Acknowledgments

The first author was partially supported by grants numbered DMS-0802961
and DMS-1100604 from the National Science Foundation. The second author
was partially supported by several grants from The City University of New
York PSC-CUNY Research Award Program, and by a grant from the Queens
College Research Enhancement Program. The second and third authors were
partially supported by grant numbered DMS-1001306, and the second author
also by DMS-1362206, from the National Science Foundation. All authors wish
to acknowledge Richard Shore for useful conversations and Matthew Harrison-
Trainor, Alexander Melnikov, and Antonio Montalbán for allowing us to include
Theorem 5.5 here. They also thank the referee for pointing out some important
corrections to Lemma 2.4.

Lange
Department of Mathematics
Wellesley College
106 Central Street
Wellesley MA 02481
USA
karen.lange@wellesley.edu
http://palmer.wellesley.edu/⇠ klange/

Miller
Department of Mathematics
Queens College - City University of New York
65-30 Kissena Blvd.
Flushing, NY 11367
Ph.D. Programs in Mathematics & Computer Science
CUNY Graduate Center
365 Fifth Avenue
New York, NY 10016
USA
Russell.Miller@qc.cuny.edu

Steiner
Department of Mathematics
Vanderbilt University
1326 Stevenson Center
Nashville, TN 37240
USA
rebecca.m.steiner@vanderbilt.edu

	Wellesley College
	Wellesley College Digital Scholarship and Archive
	2014

	Classifications of Computable Structures
	Karen Lange
	Russell Miller
	Rebecca M. Steiner
	Recommended Citation

	tmp.1471023401.pdf.dCKKl

