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Abstract

Finding the connected components of an undirected graph G � �V�E� on n � jV j
vertices and m � jEj edges is a fundamental computational problem� The best known
parallel algorithm for the CREW PRAM model runs in O�log� n� time using n�� log� n
processors 
�� ���� For the CRCW PRAM model� in which concurrent writing is
permitted� the best known algorithm runs in O�log n� time using slightly more than
�n � m�� log n processors 
��� �� ��� Simulating this algorithm on the weaker CREW
model increases its running time to O�log� n� 
��� ��� ���� We present here a simple
algorithm that runs in O�log��� n� time using n � m CREW processors� Finding an
o�log� n� parallel connectivity algorithm for this model was an open problem for many
years�



� Introduction

Let G � �V�E� be an undirected graph on n � jV j vertices and m � jEj edges� A path
p of length k is a sequence of edges �e�� � � � � ei� � � � � ek� such that ei � E for i � �� � � � � k�
and ei and ei�� have a common endpoint for i � �� � � � � k � �� At most one endpoint
is common with any other� We say that two vertices belong to the same connected
component if and only if there is a path containing them�

The problem of �nding the connected components of a graph G � �V�E� is to
divide the vertex set V into equivalence classes� each one containing vertices that
belong to the same connected component� These classes are sometimes represented
by a set of pointers p�x�� where x � V � such that vertices v and w are in the same
class if and only if p�v� � p�w� �Figure ���

Figure �� A graph G with three connected components �top� and the pointers p at
the end of the computation �bottom��

It is well known that the connected components problem for both directed
and undirected graphs has a linear�time sequential solution using depth��rst search

���� but implementation of this method in parallel seems very di�cult 
���� No
polylogarithmic�time deterministic parallel algorithm is known for depth��rst search�
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and the best randomized algorithm that can be used to do depth �rst search 
�� runs
in O�log� n� using almost n� processors�

Prior to our work� the best known deterministic parallel algorithm for connectivity
ran in O�log� n� time on the CREW PRAM using n�� log� n processors� �Throughout
the paper� when we wish to denote log� n explicitly� we use lg n�� This result� due
to 
��� improved the processor complexity of 
���� In the CREW model of parallel
computation� concurrent writing to any memory location by more than one processor
is not allowed� For the CRCW PRAM model� in which concurrent writing is per�
mitted� the best known algorithm runs in O�log n� time using �n � m���n�m�� log n
processors 
��� �� ��� There is also a randomized algorithm 
��� with the same time
complexity� Simulating an algorithm designed for this model on the weaker CREW
model increases its running time to O�log� n� 
��� ��� ����

We present an e�cient and simple algorithm that runs in O�log��� n� time using
n�m CREW processors� This is a somewhat surprising result because� as Karp and
Ramachandran have noted 
���� �graph problems seem to need at least log� n time on
a CREW and EREW PRAM and log n on a CRCW PRAM�� This observation stems
from the fact that many parallel graph algorithms employ a connectivity procedure
as a subroutine� Indeed� our result improves the running times of algorithms for
several graph problems� including ear decomposition 
���� biconnectivity 
�	�� strong
orientation 
��� and Euler tours 
���

Our algorithm is the �rst parallel connectivity algorithm with running time
o�log� n� for this model� In the course of devising the algorithm� algorithmic tech�
niques were invented which may have other applications� since they address problems
arising often in parallel graph algorithms�

While there are three major innovations on which our new time bound depends�
the most subtle of these is the scheduling of the rate of growth of connected compo�
nents� We have found a suitable rate for components to grow so as to control the
overhead attendant on redundant edge removal and� since components may actually
grow faster than this ideal rate� we have devised an algorithm which� when necessary�
recognizes episodically when a component is growing too fast and therefore can be
ignored�

A PRAM �Parallel Random Access Machine� employs p processors� each one able
to perform the usual computation of a sequential machine using some �nite amount
of local memory� The processors communicate through a shared global memory to
which all are connected� Depending on the way the access of the processors to the
global memory is handled� PRAMs are classi�ed as EREW� CREW and CRCW� �In
the model names� E stands for �exclusive� and C for �concurrent��� In the EREW
PRAM� no two processors are allowed to read concurrently from or write concurrently
to the same cell in the shared memory� In the CREW PRAM� concurrent reads are
allowed� and in the CRCW PRAM� both concurrent reads and writes are allowed�
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�See 
��� for more details on the PRAM model��
The paper is organized as follows� Section � gives a general overview of the major

di�culties that arise in the process of discovering a fast parallel connectivity algorithm
for a model that does not allow write con�icts� Then� Sections �� � and � address
these di�culties independently� Section � describes how the solutions proposed are
incorporated into the algorithm� It also gives an overview of the algorithm� Section �
presents the algorithm in detail and Section 	 contains the correctness and complexity
proofs� Finally� Section � presents conclusions�

We present notation as the need for it arises� In the case of edges� we use the
notation e � �i� j�� for vertices i and j in E� to represent both undirected edges and
directed arcs and pointers� relying on context to make clear to the reader what is
meant�

� The General Idea and Implementation Di�cul�

ties

We introduce �rst the general idea behind the algorithm� Then� we discuss the
problems encountered in implementing this general idea and the solutions we propose�

Let G � �V�E� be the input graph with n � jV j vertices and m � jEj edges� We
assume that there is one processor� Proc�i�� assigned to each vertex i � V and one
processor� Proc�i�j�� assigned to each undirected edge �i� j� � E which� for implemen�
tation reasons� is represented as two directed edges� At later stages of the algorithm�
this same processor is assigned to the directed arcs and pointers the algorithm con�
structs between these two vertices� Thus m processors su�ce for all the edges the
algorithm uses�

The algorithm deals with components� which are sets of vertices already known to
belong to the same connected component of G� Each component is equipped with an
edge�list� a linked list of the edges that connect it to other components� Initially there
are n components � each vertex is a separate component� The algorithm proceeds
as follows �See Figure ���

repeat until there are no edges left�

�� Each component picks� if possible� the �rst edge from its edge�list leading to a
neighboring component �called its mate�� and hooks by pointing to it� The hook�
ing process creates clusters of components called pseudotrees �directed graphs
with exactly one directed cycle�� If a component has an empty edge list� it
hooks to itself�

�� Each pseudotree is identi�ed as a new component� the vertices of which are the
components referred to in step �� above� One of these vertices is designated to

�



Figure �� �Top� The input graph G� �Middle� Vertices have picked their mates�
Dotted are those edges that were not picked by any vertex� An arc points from
a vertex to its mate� Three pseudotrees are shown in this �gure� Note that each
pseudotree contains a cycle� �Bottom� The new components have been identi�ed�
Dashed edges are internal edges that will not help the component grow� Note that
there are multiple edges between components�
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be its representative� Each representative receives into its edge�list all the edges
contained in the edge�lists of the vertices in its pseudotree�

�� Edges internal to components and multiple between components are removed�

There are three problems we have to deal with in order for the algorithm to run fast
without concurrent writing�

Eliminating cycles� The parallel hooking in the �rst step of the algorithm above
creates pseudotrees which need to be contracted� The usual pointer�doubling
technique does not work on cycles when exclusive writing is required� Previous
algorithms deal with this problem in di�erent ways� The algorithm of 
���
spends O�log n� time to create trivial pseudotrees� while the algorithm of 
���
uses the power of concurrent writing to avoid pseudotree creation�

We solve this problem with a cycle�reducing shortcutting technique we introduce
in Section �� This technique� when applied to a pseudotree� contracts it to a
rooted tree in time logarithmic in the length of its cycle� and when applied to
a rooted tree� contracts it to a rooted star in time logarithmic in the length of
its longest path�

Constructing the edge�list of a new component� Computing the set of the
edges of all the components in a pseudotree without concurrent writing may
be time consuming� There is possibly a large number of components that hook
together in the �rst step and therefore a large number of components that are
ready to give their edge�lists simultaneously to the new component�s edge�list�
We note that 
��� uses the power of concurrent writing to overcome this prob�
lem� while 
��� uses an adjacency matrix and O�n�� processors to solve it in
O�log n� time�

The edge�plugging scheme we introduce in Section � produces a new edge list
in constant time without concurrent writing� whether or not the component is
yet contracted to a rooted star�

Finding a mate component� Having a component pick a mate may also be time
consuming� There may be a large number of edges internal to the component�
and this number grows every time components hook� None of these internal
edges can be used to �nd a mate� Therefore� a component may fail many times
to �nd a mate if it picks internal edges� On the other hand� removing all the
internal edges before picking an edge may also take a long time�

This problem is solved by the growth�control schedule we introduce in Section ��
Components are scheduled to grow in size in a uniform way that controls their

	



Figure �� A pseudotree�

minimumsizes as long as continued growth is possible� At the same time internal
edges are identi�ed and removed periodically to make hooking more e�cient�

We should note that� even though both the cycle�reducing technique and the edge�
plugging scheme provide valuable tools for the algorithm� it is the growth�control
schedule that achieves the o�log� n� running time� We have found a growth rate for
components which is fast enough for our time bound� and at which the overhead at�
tendant on redundant edge removal can be controlled� and for which components that
grow faster can be ignored� Our algorithm recognizes such faster growing components
at points where it is necessary to do so� and it guarantees that components grow at
least at the minimum rate�

The techniques we present may have application in other parallel graph algorithms�
since the problems they address arise often in the design of parallel algorithms� In
the following sections we present these techniques independently of the main result�
Lastly we show how they combine to create a fast connectivity algorithm�

� Pseudotree Contraction Rules

A pseudotree P � �C�D� is a connected directed subgraph with jCj � n vertices
and jDj � n arcs for some n� for which each vertex has outdegree one �Figure ���
An immediate consequence of the outdegree constraint is that every pseudotree has
exactly one simple directed cycle �which may be a loop�� We call the number of arcs
in the cycle of a pseudotree P its circumference� circ�P ��

A rooted tree is a pseudotree whose cycle is a loop on some vertex r called the
root� So� it has circumference one� A rooted star� �C�D�� is a rooted tree with root r�
where� for all vertices x � C� �x� r� � D�
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A pseudoforest F � �V�A� is a collection of pseudotrees with vertices V � and arcs
A on these vertices�

We de�ne the pseudotree contraction problem as follows�

Problem � Pseudotree Contraction� Given a pseudotree P � �C�D�� create a
rooted star R � �C�D�� having as root some vertex r � C such that for each v � C�
�v� r� � D��

We show how to solve the pseudotree contraction problem in O�log jCj� parallel
time using jCj CREW PRAM processors�

Pseudoforests are especially interesting in parallel computation� Many parallel
graph algorithms in addition to ours create pseudotrees using an operation called
hooking� in which each vertex simultaneously chooses a neighbor to point to� Con�
nectivity� minimum spanning tree� maximal independent set and tree�coloring� 
���
��� ��� �� ��� ��� ��� are among the problems with algorithms that deal with creation
and manipulation of pseudotrees�

However� the presence of the cycle complicates the parallel contraction of the
pseudotrees� The reason that the well known pointer�doubling technique 
��� does
not work on a cycle is that it does not terminate �Figure ��� Even if one modi�es
pointer doubling to recognize a cycle by keeping track of when a pointer again reaches
a vertex it pointed to earlier� pointer�doubling performs poorly as it may run in time
linear in the circumference of the cycle�

We introduce here a set of pointer�jumping rules called cycle�reducing �CR� short�
cutting rules� These rules are used to reduce a pseudotree to a rooted star �see
Figure ��� without concurrent writing by the processors involved� in time dlog��� h e
where h is the longest simple directed path of the pseudotree�

Let G � �V�E� be a directed graph� We assume that each vertex v � V has a
unique identi�er� for example� the number of the processor responsible for the vertex�
A comparison between two vertices corresponds to a comparison between their two
identi�ers� Let F � �V� p� with F � G be a given pseudoforest de�ned on the vertices
of G� We would like to contract each of F �s pseudotrees to a rooted star� We do so
using the CR shortcutting rules �Figure ��� These rules assign the vertex r having
the smallest number among all the vertices in the cycle of the pseudotree to be the
root of the future rooted tree� The idea behind the CR rules is that they do not let
any of the vertices of the pseudotree shortcut over any vertex that could be the future
root�

To use the CR rules� we designate the tail vertex of certain pointers �and thereby
the pointer� as bold� Bold pointers belong only to possible roots of a pseudotree� Each
vertex v of the pseudotree �rst executes the rule�enabling statement�
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Figure �� The usual pointer jumping technique cannot deal with cycles�
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for each vertex v � C in parallel do

bold�v� � id�v� � id�p�v��

To contract a pseudotree� its vertices repeatedly execute the CR procedure given
below� The rules of this procedure are also graphically described in Figure �� It is
convenient in the discussion to refer to an ordinary pointer as light� in constrast to
bold�
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Figure �� Using the CR shortcutting rules� the cycle can be reduced to a rooted tree
in logarithmic number of steps�
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Figure �� Cycle�Reducing rules� ��� and ��� Terminating rules� ��� Bold�bold rule�
��� Bold�light rule� ��� Light�light rule� ��� Light�Bold rule� Comparison between
vertices means comparison between their corresponding numbers�

if bold�v� and p�p�v�� � v then bold�v� � false
p�v� � v

else if bold�v� and p�p�v�� � p�v� then bold�v� � false
else if bold�v� and bold�p�v�� then p�v� � p�p�v��

else if bold�v� and not�bold�p�v���
then if id�v� � id�p�v�� then bold�v� � false

p�v� � p�p�v��
endif

else if not�bold�v�� and not�bold�p�v��� then p�v� � p�p�v��
f else if not�bold�v�� and bold�p�v�� then do nothing endif g
endif

endif

endif

endif

endif

We refer to the �rst two rules as terminating rules� and to the remaining four
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rules as bold�bold� bold�light� light�light and light�bold� respectively� The names are
given according to the v and p�v� pointers� Shortcutting occurs in all but the light�
bold rule� in which case the vertex attempting the jump might shortcut over the
smallest numbered vertex of a cycle�

We �rst show that the CR rules do� in fact� contract a pseudotree to a rooted tree�
Then we prove that this contraction takes time logarithmic in the number of vertices
in the pseudotree�

Lemma � Let P be a pseudotree with cycle c� When the CR rules apply on P for a
long enough period of time� they contract it to a rooted tree� The root of this tree is
the smallest numbered vertex� r� that appears on c�

Proof� We say that vertex v has reached vertex u if p�v� � u� According to the
rule�enabling statement and the CR rules� vertex r has a bold pointer for as long as
there is a nontrivial cycle in the pseudotree� At the same time� any vertex of the cycle
c that reaches r must do so with a light pointer� called a last pointer� �Note that
there is only one last pointer on each pseudotree� because there is only one cycle��
So� no vertex in c can shortcut over r because the light�bold rule applies� Moreover�
r continually shortcuts over the other pointers in the cycle since the bold�bold and
bold�light rules permit it� Eventually� the �rst terminating rule applies and r reaches
itself� e�ectively becoming the root of a rooted tree� �

Let P be an n�vertex pseudotree with vertex set C and let r be its root� if P is a
rooted tree� or its future root �the smallest numbered vertex on P �s cycle�� We de�ne
the distance� dv� of a vertex v � C to be the number of pointers �pseudotree arcs� on
the shortest directed path from v to r that uses a last pointer� The inclusion of the
last pointer condition in the de�nition of dv is needed to account for vertices not on
C that point to r with a bold pointer� Since these vertices jump over r during the
cycle contraction� we need to make their distances greater than dr� Also� we de�ne
dkv of vertex v to denote dv after k applications of the CR rules on P � We can write
dv as d�v� We show that each application of the CR rules on P decreases the distances
dv of the vertices v � C by roughly a factor of two�thirds�

Lemma �

dkv � d�dk��v

�
e

Proof� The proof is by induction on the distance dkv � The base case holds trivially�
since for all v and for all k such that dk��v � � the lemma is true�

For a given vertex v we assume that for all the vertices having distance smaller
than dkv and for all the k�� previous applications of the CR rules� the hypothesis holds�
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k�th appl�
�

�

p�v�
wv v w

v wwv
p�v� p�v�

�

� k�th appl�

Figure �� �Top� Case � of the Lemma� The light�light case is similar� �Bottom�
Case � of the Lemma� An asterisk ��� over a pointer means that this pointer could
be either bold or light�

That is� we assume that for all vertices u and for all k satisfying � � dk��u � dk��v the
following holds�

dku �
l�dk��u

�

m

With this hypothesis we now prove�

dkv �
l�dk��v

�

m

We consider two cases� one accounting for application of the bold�bold� bold�light
and light�light rules on v �that is� when v�s pointer is shortcutting�� and one for the
light�bold rule �when v�s pointer is stuck� but its parent�s pointer is shortcutting��

Case �� Let us assume that v�s pointer is bold or p�v��s pointer is light� Since in
all cases v�s pointer shortcuts �Figure �� top�� the analysis is identical�

Let w � p�p�v��� We have that dk��v � � � dk��w � and we assume that dkw �
d�dk��w ��e� We want to prove that dkv � d�dk��v ��e�

At the k�th application of the CR rules v reaches w� so we have�

dkv � � � dkw

� � �
l�dk��w

�

m

�
l
� �

��dk��v � ��

�

m

�
l�dk��v

�
� �

�

m

��



�
l�dk��v

�

m
�

Case �� This is the case where v�s pointer is light �Figure �� bottom� and p�v��s
pointer is bold� The pointer of p�p�v�� is either light or bold� but in any case p�v�
shortcuts� So� let w � p�p�p�v���� We have that dk��v � � � dk��w � and we assume
that� dkw � d�dk��w ��e� We want to prove that� dkv � d�dk��v ��e�

At the k�th application of the CR rules p�v� reaches w� therefore we have�

dkv � � � dkw

� � �
l�dk��w

�

m

�
l
� �

��dk��v � ��

�

m

�
l
� �

�dk��v

�
� �

�

m

�
l�dk��v

�

m
�

�

The following lemmas are useful in proving the connectivity algorithm correct�
Let � � ���� � ���lg �

�
�� �Recall that we use lg n to denote log� n��

Lemma � When the cycle�reducing rules are applied d�te times to a rooted tree� any
vertex within distance �t from the root reaches the root of the tree�

Proof� From Lemma � and the two terminating rules we derive that when the
cycle�reducing rules are applied t times to a rooted tree� any vertex within distance
����t � � from the root reaches the root of the tree� Vertices with di�� � �� � � i � t
�i�e�� within distance � from the root�� do so in the next step of the CR rules� The
Lemma follows by observing that d�te � t��lg �

��� therefore ����
d�te � �t� �

Lemma � When the cycle�reducing rules are applied d�te times to a pseudotree P
whose cycle has circumference no larger than �t� they contract it to a rooted tree
with root the vertex r having the smallest number among the vertices in the cycle�
Moreover� any vertex within distance �t from r in the original pseudotree has reached
r�

Proof� We observe that dr � circ�P �� If circ�P � � �t� then r�s pointer reaches
itself in d�te steps �Lemma �� and r becomes the root of a rooted tree� On the other
hand� any vertex at distance �t from r reaches r after d�te applications of the CR
rules� �

So we have proved the following theorem for the CR rules�
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vuwvu

w

uv

w

Figure 	� Contraction of the vertices v� u�w�

Theorem � A pseudotree P with h � maxv�Pfdvg is contracted to a rooted star R
after dlg��� h e applications of the CR rules� The root of R is the smallest numbered
vertex on P �s cycle�

�

� Edge�Plugging Scheme

A common representation of a graph G � �V�E� is the adjacency list� The graph is
represented as an array of jV j vertices� and each vertex v in the array is equipped
with a pointer to its edge�list L�v�� a linked list of all the edges that connect v to
other vertices of the graph� The pointer next�e� points to the edge appearing after
edge e in the edge�list where e is contained�

Contraction is one of the basic operations de�ned on graphs 
���� Under this
operation� two vertices v and w connected with an edge �v�w� are identi�ed as a new
vertex vw �Figure 	�� We can generalize slightly this operation to be performed on a
subset of tree�connected vertices of the graph� rather than just on the vertices of one
edge� Again� this subset is identi�ed with a new vertex �which some authors call a
supervertex�� In practice� one of the vertices in the subset� called the representative�
plays the role of the new vertex� To keep the representation of the graph consistent�
one needs to put all the edges formerly belonging to the edge�lists of each vertex in
the set into the edge�list of the newly formed vertex�

As discussed in the previous section� pseudotrees are vertex subsets that appear
naturally in parallel computation� Without loss of generality� we can think of the
representative r as being the vertex assigned as the root by the CR rules� So� the
following problem naturally arises�
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L�w�w
v
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L�v�v

w
L�v�v

v
w L�w�

Figure �� Edge lists of nodes v and w before �top� and after �bottom� the edge
plugging step�

Problem � Edge�list Augmentation� Given a pseudotree P � �C�D� of a graph
G � �V�E�� i�e�� C � V and �u�w� � D � �u�w� � E� augment the edge�list of
one of C�s vertices� say the representative r� with the edges that are included in the
edge�lists of all the vertices v � C�

We show how to solve this problem in constant time without memory access
con�icts when the representative of the pseudotree is known�

Let the first and last functions de�ned on L�v� give the �rst and last edges�
respectively� appearing in L�v�� For implementation reasons it is convenient to assume
that there is a fake edge at the end of each edge�list� All these functions are easily
implemented with pointers in the straightforward way�

We represent each undirected edge �v�w� by two twin copies �v�w� and �w� v�� The
former is included in L�v� and the latter in L�w�� The two copies are interconnected
via a function twin�e� which gives the address of the twin copy of edge e� We can
assume that both �v�w� and �w� v� are being simulated by the same processor� There�
fore� calculating the twin function in constant time is straightforward� If this is not
the case� then the twin function is calculated in two steps using array M 
���n� ���n�
and �m processors� First� Proc�v�w� writes in M 
v�w� the address of edge �v�w��
Next� the processor reads in twin��v�w�� the address of edge �w� v� from M 
w� v��

The edge�list augmentation problem can be solved with the edge�plugging scheme
we present here� Let v � C� v 	� r� be a vertex in the pseudotree and �v�w�� �v�w� �

�	



L�e�

L�b�

L�d�

L�c�

L�a�

ed

c

ba

L��r�r

Figure ��� The e�ect of the plugging step execution by all vertices of a pseudotree
but the representative r� On the left is P � �C�D�� On the right is L��r� after the
execution of the plugging step�

D� be its outgoing arc in the pseudotree P � According to this scheme� v plugs its edge�
list L�v� into w�s edge�list by redirecting some pointers� The exact place that L�v�
is plugged is after the twin edge �w� v� contained in L�w� �Figure ��� This ensures
exclusive writing� The edge�plugging is done by having each vertex v � C � frg
execute the plugging step�

for each vertex v � C � frg in parallel do

let �v�w� � D
let �w� v� � twin��v�w��
next�last�L�v���� next��w� v��
next��w� v�� � first�L�v��

endfor

We can see that the e�ect of having all v � C � frg perform the plugging step
simultaneously is to place all the edges in their edge�lists into r�s updated edge�list
L��r� �Figure ���� In particular we can prove the following lemma�

Lemma 	 Let P � �C�D� be a rooted tree with root r� If the edge�lists of all vertices
in C are linked lists� then if all vertices in C except r simultaneously execute the
edge�plugging step �described above�� r�s edge�list becomes a linked list containing all
edges in D� No write con�icts occurs during the edge�plugging step�
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Proof� First� observe that if all vertices in C simultaneously execute the edge�
plugging step� the only processor that accesses pointer next�twin��v�w��� is the pro�
cessor assigned to vertex v� Therefore there is no writing con�ict� and if follows that
were the pluggings to be done in sequential order� the order would not matter�

Next� we show that the result of this step is that r�s edge list becomes a linked
list containing all edges in D� For the sake of the proof� we can assume as noted
above that the edge�plugging operations occur in this particular order� �rst� vertices
at distance � from the root plug their lists� then vertices at distance �� and so on�
until all vertices �but r� plug� It follows by induction� that an edge in the list of a
vertex at distance k ends up in the edge list of r� �

So� we have shown that the edge�list augmentation problem can be solved in
constant time once the representative of the pseudotree has been determined�

The connectivity algorithm we present in Section � may execute the plugging step
before the contraction of a pseudotree to a rooted tree� Thus one may ask what the
e�ect is of executing the edge�plugging step before the representative is known and
all vertices participate� The following lemma shows what occurs if all vertices in the
pseudotree execute the edge�plugging step�

Lemma 
 Let P � �C�D� be a rooted tree with root r� If the edge�lists of all vertices
in C are linked lists� then if all vertices in C simoultaneously execute the edge�plugging
step� then all the pseudotree�s vertices are placed into two linked rings� No write
con�icts occurs during the edge�plugging step�

Proof� As in the proof of the previous lemma� we assume that the edge�pluggings
occur in the same order and the root plugs last� It is easy to see that this last
operation splits r�s edge list into two linked rings �see Figure ���� �

Note� however� that this is a recoverable situation since� in general� the represen�
tative can later reverse the e�ects of its own edge�plugging� thus joining the two rings
into a single linked list� Lemma � in Section 	 explains how this can be accomplished�

� Growth�Control Schedule

First� let us illustrate the need for such a schedule� We argued in Section � that having
a component pick a mate may be time consuming� We now make this statement more
precise�

The cycle�reducing rules and the edge�plugging scheme provide the elements of a
connectivity algorithm that works correctly on the CREW PRAM model of parallel
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Figure ��� When all the vertices in a cycle execute the plugging step� their edge�
lists are connected with two rings of edges� Observe that the first pointers of the
vertices in the cycle end up in the �rst ring while the last end up in the second� This
enables the future root of the cycle to reverse the e�ect of its own edge�plugging� thus
rejoining the two rings into a single edge�list�
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computation� Let T �n� be some number that we compute shortly� The algorithm �a
�rst attempt� is as follows�

Algorithm ��

for T �n� phases in parallel do

�� Execute the hooking step by having the representative of each component �nd
a mate� if possible�

�� Try to contract each of the resulting pseudotrees by applying the CR rules for
a constant number of times�

�� Identify the roots of any of the resulting rooted trees as new vertices�

�� Perform the plugging step on all the vertices but the representative of each
component�

�� Identify internal edges and try to remove them using pointer jumping for a
constant number of times�

It is not di�cult to see that this algorithm correctly computes the connected com�
ponents of a graph in T �n� phases� for T �n� su�ciently large� Moreover� we observe
that� if we are sure that each component can hook in each phase� then only dlg ne
phases are needed�

However� we cannot be sure that every component will hook in every phase� The
reason is that every time two components C� and C� hook together� the number of
internal edges grows� This growth is by a factor of jC�j 
 jC�j in the worst case� and
the time needed to remove them using pointer jumping is lg�jC�j 
 jC�j��

As a result of this� some component may attempt to hook many times before
it can �nd a neighboring component� In particular� when components grow at the
slowest rate� that is by just pairing up in every hook� the number of internal edges
added in the edge�lists in the worst case follows the sequence�

��� ��� ��� 	�� ���� � � � � �
n

�
�� � ��� ��� ��� ��� �	� � � � � �� lg
n���

So� the time to remove them is�

lg
n���X
i��

lg ��i � � �
lg
n���X
i��

i � O�log� n�

Therefore� the number of phases T �n� in this particular case would be O�log� n��
Moreover� as one can see by following the reasoning just described� even if we allow
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steps � and � to be executed more than a constant number of times� say log log n or
log� n� T �n� is not reduced asymptotically� So� the crucial observation is the following�

In the beginning� components grow very fast� due to lack of internal edges� Later�
when they have grown in size� components having many internal edges may grow much
more slowly�

This observation leads to the need for controlling the components� minimum sizes�
We introduce the growth�control schedule which lowers the running time by a factor
of
p

lg n without increasing the number of processors involved� We give a brief de�
scription of it here and in the next section go into the details �Figure ����

In order to implement the growth�control schedule� the algorithm is divided into

phases� Phase i takes as input a graph Gi� whose components are of size �
i���
p

lgn

�in terms of the number of vertices of the original graph�� and which has no internal
or redundant external edges� Phase i produces as output a graph Gi��� whose com�

ponents are of size at least �i
p

lgn� and which� again� has no internal or redundant
external edges� Thus� only dplg ne phases are needed�

Each phase consists of a number of subphases� followed by a clean�up process�
Each subphase consists of a hooking step� followed by c� of pseudotree contraction
steps� an edge�plugging step� and c� of internal edge removal steps� The constants
c� and c� are chosen so that any component which is not contracted after c� steps�

or still has internal edges after c� edge removal steps� must be of size �i
p

lgn already�
Any component that is still small after a subphase has no internal edges and� by the
observation above� can grow quickly�

After the last subphase of each phase� all components must have grown to the
proper size� In the clean�up process� all trees are contracted and internal and redun�

dant external edges are removed� The growth factor� �
p

lgn� has been chosen so that
each phase has O�log n� running time�

� Outline of the Algorithm

��� De�nitions

The algorithm executes a number of phases� requiring that each component entering

phase i have at least Bi vertices of the original graph� where B � d�
p

lgne� Therefore
at most dplg n e phases are needed� In the beginning of the algorithm all components
are of size � because they consist of one vertex of the original graph�

We say that some component is promoted to phase i� regardless of how many
phases have actually been executed� if its size is at least Bi� We should note that
the notion of promotion is needed mainly for the analysis processors may or may not
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Figure ��� �Top� Graph Gi�� in the beginning of phase i� �� To simplify the �gure�
we assume that only the doubly marked edges will be used during phase i � � for
hooking� �Bottom� Graph Gi in the beginning of phase i� Vertex v� represents the
component fv�� v�� v�g� Edge �v�� v�� represents the set of edges f�v�� v��� �v�� v��g�
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know whether a component has been promoted during a phase�
Each phase is divided into subphases� In each subphase j� components grow in size

by hooking to other components� The purpose of a phase can be seen as allowing just
enough time for hookings between components� so that all the components have either
been promoted to the next phase or they cannot grow any more� If some component
cannot grow any more� it is because it is not connected to any other component� In
this case it is called done� else it is called active�

We identify edges that components do not need to keep� Internal edges are edges
between vertices within the same component� These edges are useless and may be
removed� In general� it is di�cult to recognize these edges immediately� When
an internal edge is recognized as such� it is declared null� Since each component
contains many vertices� there may be multiple edges between two components� For
each component pair� only one such edge need be kept in order to hook the two
components� Such an edge is called a useful edge� The remaining multiple edges are
called redundant edges� When redundant edges are recognized� they are also declared
null and can be removed along with the null internal edges� Of course� it does not
matter which of the multiple edges is kept as useful� Any one will do�

��� The Subphases of a Phase

As we stated in the previous section� phase i takes as input a graph Gi � �Vi� Ei��
Each component C � Vi contains at least Bi vertices of the original graph G� Note
that if a component has fewer than Bi vertices� then it is as big as it can get� and
the algorithm will ignore it� The vertices of C are organized in a rooted star� with
representative the root of the star� denoted by rC � The other vertices in C were found
to belong to C in previous phases� and they do not play any role in phase i or in
later phases� So we may assume that in the beginning of a phase each component
C is a single vertex rC � the representative� and that all useful edges are in its edge
list� In the remainder of the section� when referring to a �xed phase i� we use the
term �component� to refer both to the set of vertices in the component and to the
representative of the component� It should be clear from the context which meaning
applies�

Each component is equipped with an edge�list� The following invariants are used
to prove correctness�

Invariant � In the beginning of a phase i there is at most one edge between any two
vertices rC�

and rC�
in Gi� In particular� �rC�

� rC�
� � Ei if and only if there was an

edge �v�w� � E such that v is in rC�
�s component and w is in rC�

�s component�
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Invariant � Let Gi � �Vi� Ei� be the input graph of phase i and r be the root of a
rooted tree P � �C�D� of Gi� Then� each unnulli	ed edge �v�w� � Ei� for which
v � C� is in L�r�

The idea of invariant � is to keep down the number of internal edges� since redun�
dant edges can become internal� while invariant � states that the edges are kept in
some rational way � much like the pseudotrees organize the vertices in some rational
way�

During each phase� components continually hook to form bigger components� As
we have described in previous sections� the hooking is done by having each component
pick� if possible� the �rst edge from its edge�list and point to the indicated neighboring
component� This operation is carried out by the representative of the component�
If there is no edge left in the component�s edge�list� then it is not connected to any
other component� and it is done� Each component performs O�

p
log n � hookings per

phase� each one in a di�erent subphase�
The hooking operation creates a pseudoforest� which is then contracted using

the cycle�reducing shortcutting technique for O�
p

log n � steps� The objective is the
following� AfterO�

p
log n � steps� components with fewer than B vertices have become

rooted stars and are ready to hook in subsequent subphases to keep growing� The
exact number of CR rule applications that achieve this objective is d�plg n e� for
� � ���� �as in Section ���

Components that are rooted trees at the end of a subphase are called ready� Those
that still do not have a root are called busy� If some component is busy at the end
of a subphase� the cycle of its pseudotree originally had circumference greater than
B� and therefore is promoted to the next phase� This component does not hook in
subsequent subphases of this phase� At the end of the phase it is given enough time
to become contracted to a star and to prepare for the next phase�

Next� the vertices of the newly formed rooted trees are recognized� Then� all the
vertices but the roots of the contracted trees execute the plugging step described in
Section �� Let r be the root of a rooted tree and v be a vertex executing the plugging
step� This places the edges of v�s edge�list into r�s edge�list� However� if v is a vertex
of a busy component� this does not work� since there is no root in v�s component
�Lemma ��� Fortunately� a busy component will be detected in a later subphase and
this problem will be �xed�

Edges �x� y� can now recognize their new endpoints p�x� and p�y� and can be
renamed accordingly� Those having both of their endpoints pointing at the same
root are internal and nullify themselves� Then� the edge�list of the root is cleared of
null edges by O�

p
log n � null�edge removal steps� This is a simple application of the

pointer�doubling technique �see also Figure ����

��



Figure ��� Example of two null�edge removal steps� The three null edges in the middle
are being removed from the edge�list�

for all edges e do in parallel

if null�next�e�� then next�e� � next�next�e��

The exact number of null�edge removal steps is �dplg n e � �� This number is
chosen so that any component having fewer than B vertices �and therefore fewer

than b��
p

lgnc null edges� can remove all its internal edges� and therefore it can �nd
a non�null edge in the next subphase� This ends a subphase�

In the next subphase� the roots of ready components try to hook again� We say
that a vertex �root� v had a successful hooking� if its mate w belongs to a di�erent
component� Observe that it is possible for a promoted component not to become a
rooted star at the end of some subphase j� because it contained a path longer than B�
As a consequence� some internal edge e may not be nulli�ed at the end of subphase
j� and the root of the component may pick e for hooking in a later subphase� This is
called internal hooking�

A root having an internal hooking may or may not detect it� For example� some
unnulli�ed internal edge �x� y� may be recognized by the root r at the time of the
hooking by checking if r 	� x� If this is the case� x was at a distance greater than B
from r in the tree� and so x did not have the time to reach r and rename �x� y� to
�r� y�� In this case r does not hook� since its component is known to be promoted�

An �undetected� internal hooking can only create a pseudotree� and the cycle�
reduction rules will be called again to deal with it� So� before the application of
the CR rules� components have to execute the rule enabling statement� described in
Section ��

The idea behind O�
p

log n � subphases per phase is that after that many successful
hookings a component is promoted in any case� On the other hand� one internal
hooking means that a component is already promoted�

Finally� there is another case we should address� Consider a component C having
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more than B vertices� but whose height is less than B� The CR shortcutting process
will contract it to a rooted star during the subphase of its formation� However� C
may have more than B� internal edges� and the edge�removal process may not remove
them all� This component may be unable to hook if it picks one of the remaining
unremoved null edges in the next subphase� However� failure to hook is not harmful
because the component is promoted�

Each subphase takes O�
p

log n � steps and there are at most O�
p

log n � subphases�
summing up to a total of O�log n� steps per phase� We can prove that after O�

p
log n�

subphases all components have been promoted� They may not have been contracted�
though� In the �nal �clean�up� part of the phase�

� All components are contracted to rooted stars� and representatives are identi�
�ed�

� Edges are renamed by their new endpoints�

� All internal edges are identi�ed and nulli�ed�

� All multiple edges are identi�ed� One member of each of the sets of identical
edges is kept as useful while the rest are nulli�ed as redundant� This is done as
follows� First� we sort the edge list of each component in lexicographical order�
We note that there are O�log n� time� n processor� sorting algorithms for both
the CREW PRAM model 
	� �� ��� and the CREW PPM model 
���� Then�
blocks of redundant edges are identi�ed and nulli�ed� This step takes O�log n�
time using m processors�

� The edge�list of each component is prepared by deleting all the null edges�

Each of these steps take O�log n� parallel running time� So� the total running time
of the algorithm is O�log��� n� using n � m CREW PRAM processors�

	 The Algorithm

The important ideas have been presented in the previous sections� We now present
the algorithm in detail�

In the beginning� each component contains a single vertex v � V of the input
graph G � �V�E�� so we initialize by setting root�v� to true for each v � V � The
edge�list of each component is also formed as described above� with 	rst� last� and
twin pointers� Each edge list is terminated by a fake edge� Then� the procedure
phase is executed dplgn e times� At the end� the vertex set V has been divided into
a number of equivalence classes containing the connected components�
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Procedure phase

�� Initialization

for each vertex v do in parallel

if root�v� then not�promoted�v��
subphase�v� � �
mate�v� � v

�� Component Promotion

for i� � to dplg n e do
execute subphase�i��

Comment� At the end of this step� each component is either promoted or done�
Each subphase takes time O�

p
log n ��

�� Contract the pseudoforest to rooted stars

for each vertex v such that not�root�v�� do in parallel

bold�v� � id�v� � id�p�v��

for i� � to d� � lgne do
for each vertex v in parallel do

v executes the appropriate CR rule

Comment� At the end of the last subphase components were rooted stars�
rooted trees or pseudotrees� This step gives enough time to the last two cate�
gories to become rooted stars before they enter the next phase� First� the rule
enabling step is executed and then� the CR rules are applied�

�� Rename edges and identify internal edges

for each edge �v�w� in parallel do

rename �v�w� to �p�v�� p�w��

for each edge �v� v� in parallel do

null��v� v��

Comment� Internal edges of rooted stars are easily recognized and nulli�ed�
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�� Identify redundant edges

Run list�ranking on the edge�list of each component to �nd the distance of each
edge from the end of its list�

Copy each edge�list in an array using as index the results of the list ranking�

Sort the array 
	� ��� and use the results to form a sorted linked list�

for each edge �v�w� in parallel do

if next��v�w�� � �v�w� then null��v�w��

Comment� The sorting places all multiple edges in blocks of consecutive identi�
cally named edges� The last edge in a block of consecutive edges having identical
�v�w� names is kept as useful� The rest nullify themselves as redundant� Since
the useful edge �v�w� found in L�v� may� in general� di�er from the useful edge
�w� v� found in L�w�� some care must be taken for the twin function to be
recomputed correctly� Step � below takes care of this�

�� Remove internal and redundant edges�

for j � � to �dlg ne do
for each edge e do in parallel

if null�next�e��
then next�e� � next�next�e��

for each vertex v such that root�v� in parallel do

if null�first�L�v���
then first�L�v�� � next�first�L�v���

Comment� This step removes blocks containing up to m consecutive null edges�
However� if the �rst edge on some list was null� no pointer could have jumped
over it� and it cannot have been removed� The last step explicitly removes
any null edge from first�L�v��� The remaining edges satisfy Invariant � �Sec�
tion �����

�� Recomputation of the twin function�

for all edges �v�w� such that not�null��v�w��� in parallel do

let �v�� w�� � next��v�w��
let prev��v�� w��� � �v�w�
twin��v�w�� � prev�next�twin��w� v����
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Comment� This �nal step recomputes the twin function of the useful edges
�v�w� in constant time as follows� First� observe that� after removing redun�
dant edges from an edge�list� all edges named �v�w�� useful and redundant�
point at the same location� This location is the edge �v�� w�� that comes lexi�
cographically after �v�w�� The useful edge �v�w� passes its address to a �eld
prev��v�� w��� From there� the useful edge �w� v� reads it� by following pointer
next�twin��w� v����

Procedure subphase�i�

�� The hooking step

for each vertex v such that root�v� and active�v� and not�promoted�v��
do in parallel

let �x� y� � first�L�v��
if �x� y� � nil then done�v�
else if x 	� v then promoted�v�
else if null��x� y�� then promoted�v�
else mate�v�� y

p�v� � y
not�root�v��

Comment� Roots of still active and possibly unpromoted components try to
pick an edge from their edge�list� If there is no edge in L�v�� i�e� first�L�v�� �
nil� its component is not connected to any other component and it is done� If
x 	� v then p�x� 	� v� and d�x � B �d�x is de�ned in Section ��� This indicates that
v was the root of a tree� not a star� If the edge found was null� v�s component
had more than B� null edges and therefore more than B vertices� In the last
two cases� v�s component is promoted� Otherwise� v can hook to its mate vertex
y� Also� note that mate�v� is used in our analysis but� in fact� it need not be
saved since it is de�ned by L�v� whenever it is needed�

�� Pseudotree contraction

for each vertex v such that not�root�v�� do in parallel

bold�v� � id�v� � id�p�v��

for j � � to d�plg n e do
for each vertex v do in parallel

v executes the appropriate CR rule
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Comment� Vertices execute the rule enabling statement and then apply the
CR rules for d�plg n e times� which forces all components with fewer than B
members to become rooted stars� Observe that after this step components with
more than B members may become rooted trees or non�rooted pseudotrees�
This step takes O�

p
log n � time�

�� Root recognition step

for each vertex v such that p�v� � v do in parallel

root�v�
mate�v� � v
if subphase�v� � i� �

then subphase�v� � i
else promoted�v�

next�twin�first�L�v���� � next�last�L�v���
next�last�L�v���� nil

Comment� The new roots of the newly formed trees or stars identify them�
selves� If root v was also root in the previous subphase� its component may still
be unpromoted� But� if there was at least one subphase j� where subphase�v� �
j � i� during which v did not hook� then during subphase j vertex v belonged
to either a busy component or a rooted tree with height more than B that had
an internal hooking� In either case the component was promoted� Note that v
performed the edge�plugging step �step �� below� during subphase subphase�v��
Lemma � of the next subsection explains why the e�ect of v�s plugging step can
be reversed by the last two statements�

�� The edge�plugging step

for each vertex v such that not�root�v�� and subphase�v� � i� �
do in parallel

next�last�L�v���� next�twin��v�w���
next�twin��v�w���� first�L�v��

Comment� Non�root vertices that were roots in the previous subphase and
therefore hold an edge�list� plug it into their mate�s edge�list� At this point
each unpromoted star has all the edges of its component members contained in
its root�s edge�list �Lemmas �� ���
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�� Edge renaming and identification of internal edges

for each edge �v�w� do in parallel

if p�v� � r and root�r�
then rename �v�w� to �r� w�

if p�w� � r and root�r�
then rename �v�w� to �v� r�

for each edge �r� r� do in parallel

null��r� r��

for each vertex v such that not�root�v�� and root�p�v�� in parallel do

null�last�L�v���

Comment� Edges identify their new endpoints� Those having both endpoints
on the same root are internal and so nullify themselves� The root�r� condition
assures that lists of non�rooted pseudotrees are not altered� Finally� the last
statement explicitly nulli�es the unnecessary fake edges at the end of the edge�
lists�

�� Null�edge removal

for j � � to �dplg n e� � do

for each edge e do in parallel

if null�next�e��
then next�e� � next�next�e��

for each vertex v such that root�v� do
if null�first�L�v���
then first�L�v�� � next�first�L�v���

Comment� Blocks composed of up to b��
p

lgnc consecutive null edges are re�
moved� Unpromoted stars now contain no null edges� This ensures that they
will have a successful hooking at the next subphase�
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 Correctness and Time Bounds

Theorem � The algorithm correctly computes the connected components of a graph
in O�log��� n� parallel running time without concurrent writing�

Proof� Correctness follows from Lemma �� below� The running time comes from
the fact that there are dplg n e phases� each taking O�log n� parallel time� �

We prove that in the beginning of each subphase j� the root r of each rooted tree
P holds in L�r� all the edges �v�w� which in the beginning of phase i belonged to
the edge�lists L�v� of vertices v � P and were not deleted as internal in previous
subphases�

Let Gi � �Vi� Ei� be the input graph of phase i� We de�ne Mj � �Vi�mate� to be
the pointer graph composed of the mate pointers of Vi at the beginning of subphase
j� Note that Mj is a pseudoforest�

Lemma � At the beginning of subphase j each root r of a rooted tree �C�mate� in
Mj satis	es invariant 
�

Proof� We prove the lemma by induction on j� In the beginning of the �rst
subphase M� is composed of jV�j vertices� and the lemma holds true�

We assume that the lemma is true at the beginning of subphase j� During subphase
j the unpromoted roots of Mj hook to form larger components �step � of procedure
subphase�� Then� in step �� some roots recognize themselves as the roots of Mj���
We must prove that these roots satisfy invariant � �see page ��� at the beginning of
subphase j � ��

Let r be a root at the beginning of subphase j � �� We distinguish two cases�
��� r was also a root in the beginning of subphase j� Then� for every vertex v that

belonged to a tree which during the hooking step hooked on r�s tree� there is a path
of mate pointers from v to r� So� after the plugging step �step �� Lemma � applies�
Moreover� note that step � removes only null edges� Therefore� at the beginning of
subphase j � �� root r satis�es invariant ��

��� r was not a root in the beginning of subphase j� therefore r was a part of a
promoted component� We have seen �Lemma �� that the e�ect of having all vertices
in a cycle execute the plugging step �Figure ��� is to break the edge�lists in two rings�
To reverse the e�ect of plugging� re�join these two rings of edges into a chain� This
can be done by r in subphase j by executing the following statements�

next�twin�first�L�r���� � next�last�L�r���
next�last�L�r��� � nil
To prove that the above statements correctly re�join the rings� we have to show

that �a� first�L�r�� still points to edge �r� w�� the edge that r chose during its most
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twin�r� w�

last�L�r��first�L�r��

w

r
w

r

Figure ��� Assume that� at a later subphase j� vertex r becomes the root of the
pseudotree� Then� r can easily reverse its edge�plugging� In the �gure� the dashed
line denotes one of the two pointers that must be changed� The other is the pointer
out of last�L�r��� which should become null�
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recent hooking subphase j� � j� �b� twin��r� w�� � �w� r�� and �c� no edge shortcutted
over �r� w�� �w� r�� or last�L�r�� during subphases j� through j�

The first�L�r�� pointer is only altered in step � when root�r�� However� root�r�
was false in every subphase after j� and before j so �a� is true� Twin functions
are only computed at the end of a phase� not during subphases� so �b� is also true�
Finally� as one can see by examining step � of procedure subphase� these three edges
were never nulli�ed so� �c� is also true� �

We should note here that since only the edge�list of an already promoted compo�
nent is ever divided into two rings� one can actually postpone dealing with them until
the end of the phase� Then one can construct the edge�lists of the components from
scratch� This takes O�log n� time� so it can be done at no extra cost� The reason
that we chose to describe the rejoining steps as we did in Lemma � instead� was to
provide the details for an implementation of Algorithm � �Section ���

Lemma � If at the end of subphase j some component is busy� it has been promoted�

Proof� By de�nition� a component is busy if at the end of a subphase it is still
a pseudotree� Of course� such a component will not pick a mate in the beginning of
the next subphase because it has no root to do the operation� Procedure subphase

contracts the components for d� lgB e steps� So� according to Lemma �� pseudotrees
with circumference less than or equal to B will be rooted trees at the end of subphase
j and therefore not busy� Thus� a busy component had more than B members� and
so it has been promoted to the next phase� �

Lemma 
 Let C be a component which in subphase j has an internal hooking� Then
C has been promoted�

Proof� Recall that internal hooking happens when C picks as a mate an internal
edge �without knowing it�� Also note that such a hooking cannot happen in subphase �
because all components enter the �rst subphase without internal edges� So� j � ��

At the end of subphase j � � all components within distance B from the root
have reached the root �Lemmas � and �� and have nulli�ed the appropriate entries
in the root�s edge list �step � of procedure subphase�� So� an internal edge must be
connecting the root of the component to some vertex v in the tree� which was at a
distance more than B from the root� since it did not have enough time to reach the
root� Thus� there are at least B components that reached the root �namely� those in
the path from v to the root�� and so C has been promoted� �

Lemma �� If a component C fails to 	nd a mate at some subphase j� then either it
has been promoted or it is not connected to any other component�
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Proof� Let C be a component that cannot �nd a mate at some subphase j of
phase i� We distinguish two cases� �a� C found no edges in its edge list� and �b� C
found a null edge in its edge list�

�a� According to Lemma �� in the beginning of each subphase the root of a com�
ponent C holds all the edges of its members that have not been removed as null� So� if
an edge of C was not null� it would be in C�s edge list� Therefore� C is not connected
to any other component in the graph�

�b� First we observe that j � �� Note that at the end of subphase j � � the
algorithm performed the null edge removal step for �dlgB e� � times� This removes
any block containing up to B� null edges from the edge list of the component�s root�
Next we observe that any component with fewer than B members cannot have more
than B�B� ���� internal edges� This is a consequence of Invariant �� So� a root may
�nd a null edge in its edge list only if its component is bigger than B and therefore
is promoted� �

Lemma �� Every active� non�promoted component at subphase j will have a suc�
cessful hooking at subphase j � ��

Proof� Let C be a component that is not promoted at the end of subphase j� C
is a rooted star because jCj � B � Also� by Lemma �� its root holds all the edges that
belonged to the edge�lists of its vertices and were not deleted in previous subphases�
Moreover� L�r� contains no internal edges because they were all identi�ed and deleted�
So� if L�r� contain any edges� r will have a successful hooking at the next subphase�
�

Lemma �� After dlgB e successful hookings in some phase� a component has been
promoted�

Proof� First we show that if a root r is not promoted after performing k successful
hookings� it was continuously hooking to components having successful hookings� For�
if one of these components had an internal hooking� it was promoted therefore� r�s
component was part of a promoted component�

Next� we can prove by induction that� after each successful hooking at subphase
j� components have sizes at least �j� Therefore after dlgB e successful hookings� r is
the root of a component of size B and thus has been promoted� �

Lemma �� At the end of phase i each component is either promoted or not connected
to any other components�
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Proof� Each phase is composed of dlgB e subphases� In the beginning of a
subphase each component is either ready or busy� A busy component cannot pick a
mate� but� according to Lemma 	� it is a promoted pseudotree� On the other hand�
a ready component is a rooted tree which can pick a mate from its edge list that
contains all the edges of its members �Lemma ��� So� the reason for which a ready
component may not be able to �nd a mate �according to Lemma ���� is that the
component is promoted or done� Otherwise the component �nds a mate�

A hooking may either be successful or internal� An internal hooking� according to
Lemma �� can only happen to an already promoted component� So� we only have to
follow components which have successful hookings for dlgB e subphases� But these
components �Lemma ��� have been promoted at the end of the last subphase� �

Lemma �� In the beginning and at the end of each phase i �a� The components are
rooted stars� �b� The size of each active component is at least Bi� �c� Invariant � is
preserved� �d� There are no internal edges� �e� There is no concurrent writing�

Proof� �a� This is obviously true in the �rst phase� where components are com�
posed of a single vertex� the root� During the subphases� these components are hooked
to form a pseudoforest� Then� at step � of procedure phase� the pseudoforest is trans�
formed to a set of rooted stars� The remaining steps do not a�ect the structure of the
components� and so� in the beginning of the next phase� the components are stars�

�b� This is immediate from Lemma ���
�c� Again� invariant � �see page ��� is true for the �rst phase� For the remaining

phases� step � of procedure phase uses merge sort to identify multiple edges and the
step � removes them�

�d� Internal edges are nulli�ed in step � and are removed in step � of the procedure
phase�

�e� The elimination of concurrent writing has been discussed at the points where
preventing concurrent writing required new techniques� The absence of concurrent
writing follows from examination of the algorithm in Sections � and �� �

� Conclusions

We have presented an algorithm that �nds the connected components of an undirected
graph for the CREW PRAM model of parallel computation� This algorithm works
in O�log��� n� time� and narrows the gap of the performance between several CREW
and CRCW PRAM graph algorithms by a factor of log��� n�

This result settles a question that remained unresolved for many years because a
connectivity algorithm for this model with running time o�log� jV j� was a challenge
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that had thus far eluded researchers 
��� page 	���� Recently� Chong and Lam 
�� have
used a recursive version of our growth control schedule �Section �� to improve the
running time to O�log n log log n�� An apparently necessary idea of theirs not present
in our algorithm is to hook vertices of largest degree �rst� Also� since the results of
this paper were reported� Nisan� Szemer!edi� and Wigderson 
��� have described an
O�log n���� space algorithm for the single connectivity problem� This result subsumes
our time bound� but not our processor bound� A paper by Karger� Nisan� and Parnas

�	� which relates to this latter result has bounds equal to ours� Despite these several
results� however� a conjecture posed by Wyllie 
��� and Shiloach and Vishkin 
���
remains open� The conjecture states that no O�log n��time algorithm exists for the
exclusive�write PRAM model�

The techniques presented in this paper have been used to design new parallel
algorithms for the minimum spanning tree problem 
���� Other algorithms having
running times that depend on the connectivity algorithm include the Euler tour on
graphs 
�� ��� biconnectivity 
�	�� the ear decomposition 
��� ��� and its applications
on ��edge connectivity� triconnectivity� strong orientation� s�t numbering etc� See the
surveys by Karp and Ramachandran 
��� and by Vishkin 
��� for more details on this�

We should also mention that� with a minor modi�cation our algorithm works on
the weaker CREW PPM �Parallel Pointer Machine� model 
���� The modi�cation is
to substitute the sorting routine we use at the end of each phase by the asymptotically
optimal sorting algorithm of Goodrich and Kosaraju 
���� In the PPM model� the
memory can be viewed as a directed graph whose vertices correspond to memory cells�
each having a constant number of �elds� The PPM is based on a generalization of
Knuth�s linking automaton�
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Symbols Used in Paper�

O�� � �� Big �Oh�� italic� in formulas
O capital �Oh� in text
o lower case �oh� in text
o�� � �� Little �oh�� italic� in formulas
�� �� �� �� � � � Arabic numerals� Must distinguish � �zero� from �Oh�s
a�b�� � ��k�l�m�n lower case English letters in text
lg logarithm symbol in math formulas� Roman type as shown
log logarithm symbol in math formulas� Roman type as shown
k� l�m� n� � � � italic lower case English letters in math formulas
G�E� V� � � � italic upper case English letters in math formulas
� Greek alpha in math formulas
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