
Wellesley College
Wellesley College Digital Scholarship and Archive

Computer Science Faculty Scholarship Computer Science

1997

Connected Components in O(log3/2 n) Parallel
Time for the CREW PRAM
Donald B. Johnson
Dartmouth College

P. Takis Metaxas
Wellesley College, pmetaxas@wellesley.edu

Follow this and additional works at: http://repository.wellesley.edu/computersciencefaculty

This Article is brought to you for free and open access by the Computer Science at Wellesley College Digital Scholarship and Archive. It has been
accepted for inclusion in Computer Science Faculty Scholarship by an authorized administrator of Wellesley College Digital Scholarship and Archive.
For more information, please contact ir@wellesley.edu.

Recommended Citation
Connected Components in O(log3=2 n) Parallel Time for the CREW PRAM, with D. B. Johnson. Journal of Computers and Systems
Sciences, 54 (2): 227-242 (1997).

http://repository.wellesley.edu?utm_source=repository.wellesley.edu%2Fcomputersciencefaculty%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.wellesley.edu/computersciencefaculty?utm_source=repository.wellesley.edu%2Fcomputersciencefaculty%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.wellesley.edu/computerscience?utm_source=repository.wellesley.edu%2Fcomputersciencefaculty%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.wellesley.edu/computersciencefaculty?utm_source=repository.wellesley.edu%2Fcomputersciencefaculty%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ir@wellesley.edu


Connected Components in O�log��� n� Parallel
Time for the CREW PRAM

Donald B� Johnson� Panagiotis Metaxas�

Dartmouth College�

�email address� djohnson�cardigan�dartmouth�edu
�Current address� Department of Computer Science� Wellesley College� Wellesley� MA

���	�� email address� pmetaxas�lucy�wellesley�edu
�Department of Mathematics and Computer Science� 
�		 Bradley Hall� Hanover� NH

���





Running head� Connected Components in o�log� n� Time

Contact author� Panagiotis Metaxas
Department of Computer Science
Wellesley College
Wellesley� MA ���	�

email� pmetaxas
lucy�wellesley�edu

�



Abstract

Finding the connected components of an undirected graph G � �V�E� on n � jV j
vertices and m � jEj edges is a fundamental computational problem� The best known
parallel algorithm for the CREW PRAM model runs in O�log� n� time using n�� log� n
processors 
�� ���� For the CRCW PRAM model� in which concurrent writing is
permitted� the best known algorithm runs in O�log n� time using slightly more than
�n � m�� log n processors 
��� �� ��� Simulating this algorithm on the weaker CREW
model increases its running time to O�log� n� 
��� ��� ���� We present here a simple
algorithm that runs in O�log��� n� time using n � m CREW processors� Finding an
o�log� n� parallel connectivity algorithm for this model was an open problem for many
years�



� Introduction

Let G � �V�E� be an undirected graph on n � jV j vertices and m � jEj edges� A path
p of length k is a sequence of edges �e�� � � � � ei� � � � � ek� such that ei � E for i � �� � � � � k�
and ei and ei�� have a common endpoint for i � �� � � � � k � �� At most one endpoint
is common with any other� We say that two vertices belong to the same connected
component if and only if there is a path containing them�

The problem of �nding the connected components of a graph G � �V�E� is to
divide the vertex set V into equivalence classes� each one containing vertices that
belong to the same connected component� These classes are sometimes represented
by a set of pointers p�x�� where x � V � such that vertices v and w are in the same
class if and only if p�v� � p�w� �Figure ���

Figure �� A graph G with three connected components �top� and the pointers p at
the end of the computation �bottom��

It is well known that the connected components problem for both directed
and undirected graphs has a linear�time sequential solution using depth��rst search

���� but implementation of this method in parallel seems very di�cult 
���� No
polylogarithmic�time deterministic parallel algorithm is known for depth��rst search�

�



and the best randomized algorithm that can be used to do depth �rst search 
�� runs
in O�log� n� using almost n� processors�

Prior to our work� the best known deterministic parallel algorithm for connectivity
ran in O�log� n� time on the CREW PRAM using n�� log� n processors� �Throughout
the paper� when we wish to denote log� n explicitly� we use lg n�� This result� due
to 
��� improved the processor complexity of 
���� In the CREW model of parallel
computation� concurrent writing to any memory location by more than one processor
is not allowed� For the CRCW PRAM model� in which concurrent writing is per�
mitted� the best known algorithm runs in O�log n� time using �n � m���n�m�� log n
processors 
��� �� ��� There is also a randomized algorithm 
��� with the same time
complexity� Simulating an algorithm designed for this model on the weaker CREW
model increases its running time to O�log� n� 
��� ��� ����

We present an e�cient and simple algorithm that runs in O�log��� n� time using
n�m CREW processors� This is a somewhat surprising result because� as Karp and
Ramachandran have noted 
���� �graph problems seem to need at least log� n time on
a CREW and EREW PRAM and log n on a CRCW PRAM�� This observation stems
from the fact that many parallel graph algorithms employ a connectivity procedure
as a subroutine� Indeed� our result improves the running times of algorithms for
several graph problems� including ear decomposition 
���� biconnectivity 
�	�� strong
orientation 
��� and Euler tours 
���

Our algorithm is the �rst parallel connectivity algorithm with running time
o�log� n� for this model� In the course of devising the algorithm� algorithmic tech�
niques were invented which may have other applications� since they address problems
arising often in parallel graph algorithms�

While there are three major innovations on which our new time bound depends�
the most subtle of these is the scheduling of the rate of growth of connected compo�
nents� We have found a suitable rate for components to grow so as to control the
overhead attendant on redundant edge removal and� since components may actually
grow faster than this ideal rate� we have devised an algorithm which� when necessary�
recognizes episodically when a component is growing too fast and therefore can be
ignored�

A PRAM �Parallel Random Access Machine� employs p processors� each one able
to perform the usual computation of a sequential machine using some �nite amount
of local memory� The processors communicate through a shared global memory to
which all are connected� Depending on the way the access of the processors to the
global memory is handled� PRAMs are classi�ed as EREW� CREW and CRCW� �In
the model names� E stands for �exclusive� and C for �concurrent��� In the EREW
PRAM� no two processors are allowed to read concurrently from or write concurrently
to the same cell in the shared memory� In the CREW PRAM� concurrent reads are
allowed� and in the CRCW PRAM� both concurrent reads and writes are allowed�

�



�See 
��� for more details on the PRAM model��
The paper is organized as follows� Section � gives a general overview of the major

di�culties that arise in the process of discovering a fast parallel connectivity algorithm
for a model that does not allow write con�icts� Then� Sections �� � and � address
these di�culties independently� Section � describes how the solutions proposed are
incorporated into the algorithm� It also gives an overview of the algorithm� Section �
presents the algorithm in detail and Section 	 contains the correctness and complexity
proofs� Finally� Section � presents conclusions�

We present notation as the need for it arises� In the case of edges� we use the
notation e � �i� j�� for vertices i and j in E� to represent both undirected edges and
directed arcs and pointers� relying on context to make clear to the reader what is
meant�

� The General Idea and Implementation Di�cul�

ties

We introduce �rst the general idea behind the algorithm� Then� we discuss the
problems encountered in implementing this general idea and the solutions we propose�

Let G � �V�E� be the input graph with n � jV j vertices and m � jEj edges� We
assume that there is one processor� Proc�i�� assigned to each vertex i � V and one
processor� Proc�i�j�� assigned to each undirected edge �i� j� � E which� for implemen�
tation reasons� is represented as two directed edges� At later stages of the algorithm�
this same processor is assigned to the directed arcs and pointers the algorithm con�
structs between these two vertices� Thus m processors su�ce for all the edges the
algorithm uses�

The algorithm deals with components� which are sets of vertices already known to
belong to the same connected component of G� Each component is equipped with an
edge�list� a linked list of the edges that connect it to other components� Initially there
are n components � each vertex is a separate component� The algorithm proceeds
as follows �See Figure ���

repeat until there are no edges left�

�� Each component picks� if possible� the �rst edge from its edge�list leading to a
neighboring component �called its mate�� and hooks by pointing to it� The hook�
ing process creates clusters of components called pseudotrees �directed graphs
with exactly one directed cycle�� If a component has an empty edge list� it
hooks to itself�

�� Each pseudotree is identi�ed as a new component� the vertices of which are the
components referred to in step �� above� One of these vertices is designated to

�



Figure �� �Top� The input graph G� �Middle� Vertices have picked their mates�
Dotted are those edges that were not picked by any vertex� An arc points from
a vertex to its mate� Three pseudotrees are shown in this �gure� Note that each
pseudotree contains a cycle� �Bottom� The new components have been identi�ed�
Dashed edges are internal edges that will not help the component grow� Note that
there are multiple edges between components�

�



be its representative� Each representative receives into its edge�list all the edges
contained in the edge�lists of the vertices in its pseudotree�

�� Edges internal to components and multiple between components are removed�

There are three problems we have to deal with in order for the algorithm to run fast
without concurrent writing�

Eliminating cycles� The parallel hooking in the �rst step of the algorithm above
creates pseudotrees which need to be contracted� The usual pointer�doubling
technique does not work on cycles when exclusive writing is required� Previous
algorithms deal with this problem in di�erent ways� The algorithm of 
���
spends O�log n� time to create trivial pseudotrees� while the algorithm of 
���
uses the power of concurrent writing to avoid pseudotree creation�

We solve this problem with a cycle�reducing shortcutting technique we introduce
in Section �� This technique� when applied to a pseudotree� contracts it to a
rooted tree in time logarithmic in the length of its cycle� and when applied to
a rooted tree� contracts it to a rooted star in time logarithmic in the length of
its longest path�

Constructing the edge�list of a new component� Computing the set of the
edges of all the components in a pseudotree without concurrent writing may
be time consuming� There is possibly a large number of components that hook
together in the �rst step and therefore a large number of components that are
ready to give their edge�lists simultaneously to the new component�s edge�list�
We note that 
��� uses the power of concurrent writing to overcome this prob�
lem� while 
��� uses an adjacency matrix and O�n�� processors to solve it in
O�log n� time�

The edge�plugging scheme we introduce in Section � produces a new edge list
in constant time without concurrent writing� whether or not the component is
yet contracted to a rooted star�

Finding a mate component� Having a component pick a mate may also be time
consuming� There may be a large number of edges internal to the component�
and this number grows every time components hook� None of these internal
edges can be used to �nd a mate� Therefore� a component may fail many times
to �nd a mate if it picks internal edges� On the other hand� removing all the
internal edges before picking an edge may also take a long time�

This problem is solved by the growth�control schedule we introduce in Section ��
Components are scheduled to grow in size in a uniform way that controls their

	



Figure �� A pseudotree�

minimumsizes as long as continued growth is possible� At the same time internal
edges are identi�ed and removed periodically to make hooking more e�cient�

We should note that� even though both the cycle�reducing technique and the edge�
plugging scheme provide valuable tools for the algorithm� it is the growth�control
schedule that achieves the o�log� n� running time� We have found a growth rate for
components which is fast enough for our time bound� and at which the overhead at�
tendant on redundant edge removal can be controlled� and for which components that
grow faster can be ignored� Our algorithm recognizes such faster growing components
at points where it is necessary to do so� and it guarantees that components grow at
least at the minimum rate�

The techniques we present may have application in other parallel graph algorithms�
since the problems they address arise often in the design of parallel algorithms� In
the following sections we present these techniques independently of the main result�
Lastly we show how they combine to create a fast connectivity algorithm�

� Pseudotree Contraction Rules

A pseudotree P � �C�D� is a connected directed subgraph with jCj � n vertices
and jDj � n arcs for some n� for which each vertex has outdegree one �Figure ���
An immediate consequence of the outdegree constraint is that every pseudotree has
exactly one simple directed cycle �which may be a loop�� We call the number of arcs
in the cycle of a pseudotree P its circumference� circ�P ��

A rooted tree is a pseudotree whose cycle is a loop on some vertex r called the
root� So� it has circumference one� A rooted star� �C�D�� is a rooted tree with root r�
where� for all vertices x � C� �x� r� � D�

�



A pseudoforest F � �V�A� is a collection of pseudotrees with vertices V � and arcs
A on these vertices�

We de�ne the pseudotree contraction problem as follows�

Problem � Pseudotree Contraction� Given a pseudotree P � �C�D�� create a
rooted star R � �C�D�� having as root some vertex r � C such that for each v � C�
�v� r� � D��

We show how to solve the pseudotree contraction problem in O�log jCj� parallel
time using jCj CREW PRAM processors�

Pseudoforests are especially interesting in parallel computation� Many parallel
graph algorithms in addition to ours create pseudotrees using an operation called
hooking� in which each vertex simultaneously chooses a neighbor to point to� Con�
nectivity� minimum spanning tree� maximal independent set and tree�coloring� 
���
��� ��� �� ��� ��� ��� are among the problems with algorithms that deal with creation
and manipulation of pseudotrees�

However� the presence of the cycle complicates the parallel contraction of the
pseudotrees� The reason that the well known pointer�doubling technique 
��� does
not work on a cycle is that it does not terminate �Figure ��� Even if one modi�es
pointer doubling to recognize a cycle by keeping track of when a pointer again reaches
a vertex it pointed to earlier� pointer�doubling performs poorly as it may run in time
linear in the circumference of the cycle�

We introduce here a set of pointer�jumping rules called cycle�reducing �CR� short�
cutting rules� These rules are used to reduce a pseudotree to a rooted star �see
Figure ��� without concurrent writing by the processors involved� in time dlog��� h e
where h is the longest simple directed path of the pseudotree�

Let G � �V�E� be a directed graph� We assume that each vertex v � V has a
unique identi�er� for example� the number of the processor responsible for the vertex�
A comparison between two vertices corresponds to a comparison between their two
identi�ers� Let F � �V� p� with F � G be a given pseudoforest de�ned on the vertices
of G� We would like to contract each of F �s pseudotrees to a rooted star� We do so
using the CR shortcutting rules �Figure ��� These rules assign the vertex r having
the smallest number among all the vertices in the cycle of the pseudotree to be the
root of the future rooted tree� The idea behind the CR rules is that they do not let
any of the vertices of the pseudotree shortcut over any vertex that could be the future
root�

To use the CR rules� we designate the tail vertex of certain pointers �and thereby
the pointer� as bold� Bold pointers belong only to possible roots of a pseudotree� Each
vertex v of the pseudotree �rst executes the rule�enabling statement�

��



Figure �� The usual pointer jumping technique cannot deal with cycles�

��



for each vertex v � C in parallel do

bold�v� � id�v� � id�p�v��

To contract a pseudotree� its vertices repeatedly execute the CR procedure given
below� The rules of this procedure are also graphically described in Figure �� It is
convenient in the discussion to refer to an ordinary pointer as light� in constrast to
bold�










�

�

�

�

�

�

�

�

�

�

�

�
� �


�

�

Figure �� Using the CR shortcutting rules� the cycle can be reduced to a rooted tree
in logarithmic number of steps�

��




� if


� if

�� if

�� if

�� if

�� if

then

then

then

then

then

w

w

w

w

v

v

v

v

w

w

w

w

w

w

v

v

v

v

v

v

v � w

v � w

Do Nothing

Figure �� Cycle�Reducing rules� ��� and ��� Terminating rules� ��� Bold�bold rule�
��� Bold�light rule� ��� Light�light rule� ��� Light�Bold rule� Comparison between
vertices means comparison between their corresponding numbers�

if bold�v� and p�p�v�� � v then bold�v� � false
p�v� � v

else if bold�v� and p�p�v�� � p�v� then bold�v� � false
else if bold�v� and bold�p�v�� then p�v� � p�p�v��

else if bold�v� and not�bold�p�v���
then if id�v� � id�p�v�� then bold�v� � false

p�v� � p�p�v��
endif

else if not�bold�v�� and not�bold�p�v��� then p�v� � p�p�v��
f else if not�bold�v�� and bold�p�v�� then do nothing endif g
endif

endif

endif

endif

endif

We refer to the �rst two rules as terminating rules� and to the remaining four

��



rules as bold�bold� bold�light� light�light and light�bold� respectively� The names are
given according to the v and p�v� pointers� Shortcutting occurs in all but the light�
bold rule� in which case the vertex attempting the jump might shortcut over the
smallest numbered vertex of a cycle�

We �rst show that the CR rules do� in fact� contract a pseudotree to a rooted tree�
Then we prove that this contraction takes time logarithmic in the number of vertices
in the pseudotree�

Lemma � Let P be a pseudotree with cycle c� When the CR rules apply on P for a
long enough period of time� they contract it to a rooted tree� The root of this tree is
the smallest numbered vertex� r� that appears on c�

Proof� We say that vertex v has reached vertex u if p�v� � u� According to the
rule�enabling statement and the CR rules� vertex r has a bold pointer for as long as
there is a nontrivial cycle in the pseudotree� At the same time� any vertex of the cycle
c that reaches r must do so with a light pointer� called a last pointer� �Note that
there is only one last pointer on each pseudotree� because there is only one cycle��
So� no vertex in c can shortcut over r because the light�bold rule applies� Moreover�
r continually shortcuts over the other pointers in the cycle since the bold�bold and
bold�light rules permit it� Eventually� the �rst terminating rule applies and r reaches
itself� e�ectively becoming the root of a rooted tree� �

Let P be an n�vertex pseudotree with vertex set C and let r be its root� if P is a
rooted tree� or its future root �the smallest numbered vertex on P �s cycle�� We de�ne
the distance� dv� of a vertex v � C to be the number of pointers �pseudotree arcs� on
the shortest directed path from v to r that uses a last pointer� The inclusion of the
last pointer condition in the de�nition of dv is needed to account for vertices not on
C that point to r with a bold pointer� Since these vertices jump over r during the
cycle contraction� we need to make their distances greater than dr� Also� we de�ne
dkv of vertex v to denote dv after k applications of the CR rules on P � We can write
dv as d�v� We show that each application of the CR rules on P decreases the distances
dv of the vertices v � C by roughly a factor of two�thirds�

Lemma �

dkv � d�dk��v

�
e

Proof� The proof is by induction on the distance dkv � The base case holds trivially�
since for all v and for all k such that dk��v � � the lemma is true�

For a given vertex v we assume that for all the vertices having distance smaller
than dkv and for all the k�� previous applications of the CR rules� the hypothesis holds�

��



k�th appl�
�

�

p�v�
wv v w

v wwv
p�v� p�v�

�

� k�th appl�

Figure �� �Top� Case � of the Lemma� The light�light case is similar� �Bottom�
Case � of the Lemma� An asterisk ��� over a pointer means that this pointer could
be either bold or light�

That is� we assume that for all vertices u and for all k satisfying � � dk��u � dk��v the
following holds�

dku �
l�dk��u

�

m

With this hypothesis we now prove�

dkv �
l�dk��v

�

m

We consider two cases� one accounting for application of the bold�bold� bold�light
and light�light rules on v �that is� when v�s pointer is shortcutting�� and one for the
light�bold rule �when v�s pointer is stuck� but its parent�s pointer is shortcutting��

Case �� Let us assume that v�s pointer is bold or p�v��s pointer is light� Since in
all cases v�s pointer shortcuts �Figure �� top�� the analysis is identical�

Let w � p�p�v��� We have that dk��v � � � dk��w � and we assume that dkw �
d�dk��w ��e� We want to prove that dkv � d�dk��v ��e�

At the k�th application of the CR rules v reaches w� so we have�

dkv � � � dkw

� � �
l�dk��w

�

m

�
l
� �

��dk��v � ��

�

m

�
l�dk��v

�
� �

�

m

��



�
l�dk��v

�

m
�

Case �� This is the case where v�s pointer is light �Figure �� bottom� and p�v��s
pointer is bold� The pointer of p�p�v�� is either light or bold� but in any case p�v�
shortcuts� So� let w � p�p�p�v���� We have that dk��v � � � dk��w � and we assume
that� dkw � d�dk��w ��e� We want to prove that� dkv � d�dk��v ��e�

At the k�th application of the CR rules p�v� reaches w� therefore we have�

dkv � � � dkw

� � �
l�dk��w

�

m

�
l
� �

��dk��v � ��

�

m

�
l
� �

�dk��v

�
� �

�

m

�
l�dk��v

�

m
�

�

The following lemmas are useful in proving the connectivity algorithm correct�
Let � � ���� � ���lg �

�
�� �Recall that we use lg n to denote log� n��

Lemma � When the cycle�reducing rules are applied d�te times to a rooted tree� any
vertex within distance �t from the root reaches the root of the tree�

Proof� From Lemma � and the two terminating rules we derive that when the
cycle�reducing rules are applied t times to a rooted tree� any vertex within distance
����t � � from the root reaches the root of the tree� Vertices with di�� � �� � � i � t
�i�e�� within distance � from the root�� do so in the next step of the CR rules� The
Lemma follows by observing that d�te � t��lg �

��� therefore ����
d�te � �t� �

Lemma � When the cycle�reducing rules are applied d�te times to a pseudotree P
whose cycle has circumference no larger than �t� they contract it to a rooted tree
with root the vertex r having the smallest number among the vertices in the cycle�
Moreover� any vertex within distance �t from r in the original pseudotree has reached
r�

Proof� We observe that dr � circ�P �� If circ�P � � �t� then r�s pointer reaches
itself in d�te steps �Lemma �� and r becomes the root of a rooted tree� On the other
hand� any vertex at distance �t from r reaches r after d�te applications of the CR
rules� �

So we have proved the following theorem for the CR rules�

��



vuwvu

w

uv

w

Figure 	� Contraction of the vertices v� u�w�

Theorem � A pseudotree P with h � maxv�Pfdvg is contracted to a rooted star R
after dlg��� h e applications of the CR rules� The root of R is the smallest numbered
vertex on P �s cycle�

�

� Edge�Plugging Scheme

A common representation of a graph G � �V�E� is the adjacency list� The graph is
represented as an array of jV j vertices� and each vertex v in the array is equipped
with a pointer to its edge�list L�v�� a linked list of all the edges that connect v to
other vertices of the graph� The pointer next�e� points to the edge appearing after
edge e in the edge�list where e is contained�

Contraction is one of the basic operations de�ned on graphs 
���� Under this
operation� two vertices v and w connected with an edge �v�w� are identi�ed as a new
vertex vw �Figure 	�� We can generalize slightly this operation to be performed on a
subset of tree�connected vertices of the graph� rather than just on the vertices of one
edge� Again� this subset is identi�ed with a new vertex �which some authors call a
supervertex�� In practice� one of the vertices in the subset� called the representative�
plays the role of the new vertex� To keep the representation of the graph consistent�
one needs to put all the edges formerly belonging to the edge�lists of each vertex in
the set into the edge�list of the newly formed vertex�

As discussed in the previous section� pseudotrees are vertex subsets that appear
naturally in parallel computation� Without loss of generality� we can think of the
representative r as being the vertex assigned as the root by the CR rules� So� the
following problem naturally arises�

��



L�w�w
v

w
L�v�v

w
L�v�v

v
w L�w�

Figure �� Edge lists of nodes v and w before �top� and after �bottom� the edge
plugging step�

Problem � Edge�list Augmentation� Given a pseudotree P � �C�D� of a graph
G � �V�E�� i�e�� C � V and �u�w� � D � �u�w� � E� augment the edge�list of
one of C�s vertices� say the representative r� with the edges that are included in the
edge�lists of all the vertices v � C�

We show how to solve this problem in constant time without memory access
con�icts when the representative of the pseudotree is known�

Let the first and last functions de�ned on L�v� give the �rst and last edges�
respectively� appearing in L�v�� For implementation reasons it is convenient to assume
that there is a fake edge at the end of each edge�list� All these functions are easily
implemented with pointers in the straightforward way�

We represent each undirected edge �v�w� by two twin copies �v�w� and �w� v�� The
former is included in L�v� and the latter in L�w�� The two copies are interconnected
via a function twin�e� which gives the address of the twin copy of edge e� We can
assume that both �v�w� and �w� v� are being simulated by the same processor� There�
fore� calculating the twin function in constant time is straightforward� If this is not
the case� then the twin function is calculated in two steps using array M 
���n� ���n�
and �m processors� First� Proc�v�w� writes in M 
v�w� the address of edge �v�w��
Next� the processor reads in twin��v�w�� the address of edge �w� v� from M 
w� v��

The edge�list augmentation problem can be solved with the edge�plugging scheme
we present here� Let v � C� v 	� r� be a vertex in the pseudotree and �v�w�� �v�w� �

�	



L�e�

L�b�

L�d�

L�c�

L�a�

ed

c

ba

L��r�r

Figure ��� The e�ect of the plugging step execution by all vertices of a pseudotree
but the representative r� On the left is P � �C�D�� On the right is L��r� after the
execution of the plugging step�

D� be its outgoing arc in the pseudotree P � According to this scheme� v plugs its edge�
list L�v� into w�s edge�list by redirecting some pointers� The exact place that L�v�
is plugged is after the twin edge �w� v� contained in L�w� �Figure ��� This ensures
exclusive writing� The edge�plugging is done by having each vertex v � C � frg
execute the plugging step�

for each vertex v � C � frg in parallel do

let �v�w� � D
let �w� v� � twin��v�w��
next�last�L�v���� next��w� v��
next��w� v�� � first�L�v��

endfor

We can see that the e�ect of having all v � C � frg perform the plugging step
simultaneously is to place all the edges in their edge�lists into r�s updated edge�list
L��r� �Figure ���� In particular we can prove the following lemma�

Lemma 	 Let P � �C�D� be a rooted tree with root r� If the edge�lists of all vertices
in C are linked lists� then if all vertices in C except r simultaneously execute the
edge�plugging step �described above�� r�s edge�list becomes a linked list containing all
edges in D� No write con�icts occurs during the edge�plugging step�

��



Proof� First� observe that if all vertices in C simultaneously execute the edge�
plugging step� the only processor that accesses pointer next�twin��v�w��� is the pro�
cessor assigned to vertex v� Therefore there is no writing con�ict� and if follows that
were the pluggings to be done in sequential order� the order would not matter�

Next� we show that the result of this step is that r�s edge list becomes a linked
list containing all edges in D� For the sake of the proof� we can assume as noted
above that the edge�plugging operations occur in this particular order� �rst� vertices
at distance � from the root plug their lists� then vertices at distance �� and so on�
until all vertices �but r� plug� It follows by induction� that an edge in the list of a
vertex at distance k ends up in the edge list of r� �

So� we have shown that the edge�list augmentation problem can be solved in
constant time once the representative of the pseudotree has been determined�

The connectivity algorithm we present in Section � may execute the plugging step
before the contraction of a pseudotree to a rooted tree� Thus one may ask what the
e�ect is of executing the edge�plugging step before the representative is known and
all vertices participate� The following lemma shows what occurs if all vertices in the
pseudotree execute the edge�plugging step�

Lemma 
 Let P � �C�D� be a rooted tree with root r� If the edge�lists of all vertices
in C are linked lists� then if all vertices in C simoultaneously execute the edge�plugging
step� then all the pseudotree�s vertices are placed into two linked rings� No write
con�icts occurs during the edge�plugging step�

Proof� As in the proof of the previous lemma� we assume that the edge�pluggings
occur in the same order and the root plugs last� It is easy to see that this last
operation splits r�s edge list into two linked rings �see Figure ���� �

Note� however� that this is a recoverable situation since� in general� the represen�
tative can later reverse the e�ects of its own edge�plugging� thus joining the two rings
into a single linked list� Lemma � in Section 	 explains how this can be accomplished�

� Growth�Control Schedule

First� let us illustrate the need for such a schedule� We argued in Section � that having
a component pick a mate may be time consuming� We now make this statement more
precise�

The cycle�reducing rules and the edge�plugging scheme provide the elements of a
connectivity algorithm that works correctly on the CREW PRAM model of parallel

��



Figure ��� When all the vertices in a cycle execute the plugging step� their edge�
lists are connected with two rings of edges� Observe that the first pointers of the
vertices in the cycle end up in the �rst ring while the last end up in the second� This
enables the future root of the cycle to reverse the e�ect of its own edge�plugging� thus
rejoining the two rings into a single edge�list�

��



computation� Let T �n� be some number that we compute shortly� The algorithm �a
�rst attempt� is as follows�

Algorithm ��

for T �n� phases in parallel do

�� Execute the hooking step by having the representative of each component �nd
a mate� if possible�

�� Try to contract each of the resulting pseudotrees by applying the CR rules for
a constant number of times�

�� Identify the roots of any of the resulting rooted trees as new vertices�

�� Perform the plugging step on all the vertices but the representative of each
component�

�� Identify internal edges and try to remove them using pointer jumping for a
constant number of times�

It is not di�cult to see that this algorithm correctly computes the connected com�
ponents of a graph in T �n� phases� for T �n� su�ciently large� Moreover� we observe
that� if we are sure that each component can hook in each phase� then only dlg ne
phases are needed�

However� we cannot be sure that every component will hook in every phase� The
reason is that every time two components C� and C� hook together� the number of
internal edges grows� This growth is by a factor of jC�j 
 jC�j in the worst case� and
the time needed to remove them using pointer jumping is lg�jC�j 
 jC�j��

As a result of this� some component may attempt to hook many times before
it can �nd a neighboring component� In particular� when components grow at the
slowest rate� that is by just pairing up in every hook� the number of internal edges
added in the edge�lists in the worst case follows the sequence�

��� ��� ��� 	�� ���� � � � � �
n

�
�� � ��� ��� ��� ��� �	� � � � � �� lg
n���

So� the time to remove them is�

lg
n���X
i��

lg ��i � � �
lg
n���X
i��

i � O�log� n�

Therefore� the number of phases T �n� in this particular case would be O�log� n��
Moreover� as one can see by following the reasoning just described� even if we allow

��



steps � and � to be executed more than a constant number of times� say log log n or
log� n� T �n� is not reduced asymptotically� So� the crucial observation is the following�

In the beginning� components grow very fast� due to lack of internal edges� Later�
when they have grown in size� components having many internal edges may grow much
more slowly�

This observation leads to the need for controlling the components� minimum sizes�
We introduce the growth�control schedule which lowers the running time by a factor
of
p

lg n without increasing the number of processors involved� We give a brief de�
scription of it here and in the next section go into the details �Figure ����

In order to implement the growth�control schedule� the algorithm is divided into

phases� Phase i takes as input a graph Gi� whose components are of size �
i���
p

lgn

�in terms of the number of vertices of the original graph�� and which has no internal
or redundant external edges� Phase i produces as output a graph Gi��� whose com�

ponents are of size at least �i
p

lgn� and which� again� has no internal or redundant
external edges� Thus� only dplg ne phases are needed�

Each phase consists of a number of subphases� followed by a clean�up process�
Each subphase consists of a hooking step� followed by c� of pseudotree contraction
steps� an edge�plugging step� and c� of internal edge removal steps� The constants
c� and c� are chosen so that any component which is not contracted after c� steps�

or still has internal edges after c� edge removal steps� must be of size �i
p

lgn already�
Any component that is still small after a subphase has no internal edges and� by the
observation above� can grow quickly�

After the last subphase of each phase� all components must have grown to the
proper size� In the clean�up process� all trees are contracted and internal and redun�

dant external edges are removed� The growth factor� �
p

lgn� has been chosen so that
each phase has O�log n� running time�

� Outline of the Algorithm

��� De�nitions

The algorithm executes a number of phases� requiring that each component entering

phase i have at least Bi vertices of the original graph� where B � d�
p

lgne� Therefore
at most dplg n e phases are needed� In the beginning of the algorithm all components
are of size � because they consist of one vertex of the original graph�

We say that some component is promoted to phase i� regardless of how many
phases have actually been executed� if its size is at least Bi� We should note that
the notion of promotion is needed mainly for the analysis processors may or may not

��



v	

v�
v�

v


v�
v�

v�v�

v�

v�

v�

v�

v�

v


v


v�

v�

v�

v�v� v�

v	

Figure ��� �Top� Graph Gi�� in the beginning of phase i� �� To simplify the �gure�
we assume that only the doubly marked edges will be used during phase i � � for
hooking� �Bottom� Graph Gi in the beginning of phase i� Vertex v� represents the
component fv�� v�� v�g� Edge �v�� v�� represents the set of edges f�v�� v��� �v�� v��g�

��



know whether a component has been promoted during a phase�
Each phase is divided into subphases� In each subphase j� components grow in size

by hooking to other components� The purpose of a phase can be seen as allowing just
enough time for hookings between components� so that all the components have either
been promoted to the next phase or they cannot grow any more� If some component
cannot grow any more� it is because it is not connected to any other component� In
this case it is called done� else it is called active�

We identify edges that components do not need to keep� Internal edges are edges
between vertices within the same component� These edges are useless and may be
removed� In general� it is di�cult to recognize these edges immediately� When
an internal edge is recognized as such� it is declared null� Since each component
contains many vertices� there may be multiple edges between two components� For
each component pair� only one such edge need be kept in order to hook the two
components� Such an edge is called a useful edge� The remaining multiple edges are
called redundant edges� When redundant edges are recognized� they are also declared
null and can be removed along with the null internal edges� Of course� it does not
matter which of the multiple edges is kept as useful� Any one will do�

��� The Subphases of a Phase

As we stated in the previous section� phase i takes as input a graph Gi � �Vi� Ei��
Each component C � Vi contains at least Bi vertices of the original graph G� Note
that if a component has fewer than Bi vertices� then it is as big as it can get� and
the algorithm will ignore it� The vertices of C are organized in a rooted star� with
representative the root of the star� denoted by rC � The other vertices in C were found
to belong to C in previous phases� and they do not play any role in phase i or in
later phases� So we may assume that in the beginning of a phase each component
C is a single vertex rC � the representative� and that all useful edges are in its edge
list� In the remainder of the section� when referring to a �xed phase i� we use the
term �component� to refer both to the set of vertices in the component and to the
representative of the component� It should be clear from the context which meaning
applies�

Each component is equipped with an edge�list� The following invariants are used
to prove correctness�

Invariant � In the beginning of a phase i there is at most one edge between any two
vertices rC�

and rC�
in Gi� In particular� �rC�

� rC�
� � Ei if and only if there was an

edge �v�w� � E such that v is in rC�
�s component and w is in rC�

�s component�

��



Invariant � Let Gi � �Vi� Ei� be the input graph of phase i and r be the root of a
rooted tree P � �C�D� of Gi� Then� each unnulli	ed edge �v�w� � Ei� for which
v � C� is in L�r�

The idea of invariant � is to keep down the number of internal edges� since redun�
dant edges can become internal� while invariant � states that the edges are kept in
some rational way � much like the pseudotrees organize the vertices in some rational
way�

During each phase� components continually hook to form bigger components� As
we have described in previous sections� the hooking is done by having each component
pick� if possible� the �rst edge from its edge�list and point to the indicated neighboring
component� This operation is carried out by the representative of the component�
If there is no edge left in the component�s edge�list� then it is not connected to any
other component� and it is done� Each component performs O�

p
log n � hookings per

phase� each one in a di�erent subphase�
The hooking operation creates a pseudoforest� which is then contracted using

the cycle�reducing shortcutting technique for O�
p

log n � steps� The objective is the
following� AfterO�

p
log n � steps� components with fewer than B vertices have become

rooted stars and are ready to hook in subsequent subphases to keep growing� The
exact number of CR rule applications that achieve this objective is d�plg n e� for
� � ���� �as in Section ���

Components that are rooted trees at the end of a subphase are called ready� Those
that still do not have a root are called busy� If some component is busy at the end
of a subphase� the cycle of its pseudotree originally had circumference greater than
B� and therefore is promoted to the next phase� This component does not hook in
subsequent subphases of this phase� At the end of the phase it is given enough time
to become contracted to a star and to prepare for the next phase�

Next� the vertices of the newly formed rooted trees are recognized� Then� all the
vertices but the roots of the contracted trees execute the plugging step described in
Section �� Let r be the root of a rooted tree and v be a vertex executing the plugging
step� This places the edges of v�s edge�list into r�s edge�list� However� if v is a vertex
of a busy component� this does not work� since there is no root in v�s component
�Lemma ��� Fortunately� a busy component will be detected in a later subphase and
this problem will be �xed�

Edges �x� y� can now recognize their new endpoints p�x� and p�y� and can be
renamed accordingly� Those having both of their endpoints pointing at the same
root are internal and nullify themselves� Then� the edge�list of the root is cleared of
null edges by O�

p
log n � null�edge removal steps� This is a simple application of the

pointer�doubling technique �see also Figure ����

��



Figure ��� Example of two null�edge removal steps� The three null edges in the middle
are being removed from the edge�list�

for all edges e do in parallel

if null�next�e�� then next�e� � next�next�e��

The exact number of null�edge removal steps is �dplg n e � �� This number is
chosen so that any component having fewer than B vertices �and therefore fewer

than b��
p

lgnc null edges� can remove all its internal edges� and therefore it can �nd
a non�null edge in the next subphase� This ends a subphase�

In the next subphase� the roots of ready components try to hook again� We say
that a vertex �root� v had a successful hooking� if its mate w belongs to a di�erent
component� Observe that it is possible for a promoted component not to become a
rooted star at the end of some subphase j� because it contained a path longer than B�
As a consequence� some internal edge e may not be nulli�ed at the end of subphase
j� and the root of the component may pick e for hooking in a later subphase� This is
called internal hooking�

A root having an internal hooking may or may not detect it� For example� some
unnulli�ed internal edge �x� y� may be recognized by the root r at the time of the
hooking by checking if r 	� x� If this is the case� x was at a distance greater than B
from r in the tree� and so x did not have the time to reach r and rename �x� y� to
�r� y�� In this case r does not hook� since its component is known to be promoted�

An �undetected� internal hooking can only create a pseudotree� and the cycle�
reduction rules will be called again to deal with it� So� before the application of
the CR rules� components have to execute the rule enabling statement� described in
Section ��

The idea behind O�
p

log n � subphases per phase is that after that many successful
hookings a component is promoted in any case� On the other hand� one internal
hooking means that a component is already promoted�

Finally� there is another case we should address� Consider a component C having

��



more than B vertices� but whose height is less than B� The CR shortcutting process
will contract it to a rooted star during the subphase of its formation� However� C
may have more than B� internal edges� and the edge�removal process may not remove
them all� This component may be unable to hook if it picks one of the remaining
unremoved null edges in the next subphase� However� failure to hook is not harmful
because the component is promoted�

Each subphase takes O�
p

log n � steps and there are at most O�
p

log n � subphases�
summing up to a total of O�log n� steps per phase� We can prove that after O�

p
log n�

subphases all components have been promoted� They may not have been contracted�
though� In the �nal �clean�up� part of the phase�

� All components are contracted to rooted stars� and representatives are identi�
�ed�

� Edges are renamed by their new endpoints�

� All internal edges are identi�ed and nulli�ed�

� All multiple edges are identi�ed� One member of each of the sets of identical
edges is kept as useful while the rest are nulli�ed as redundant� This is done as
follows� First� we sort the edge list of each component in lexicographical order�
We note that there are O�log n� time� n processor� sorting algorithms for both
the CREW PRAM model 
	� �� ��� and the CREW PPM model 
���� Then�
blocks of redundant edges are identi�ed and nulli�ed� This step takes O�log n�
time using m processors�

� The edge�list of each component is prepared by deleting all the null edges�

Each of these steps take O�log n� parallel running time� So� the total running time
of the algorithm is O�log��� n� using n � m CREW PRAM processors�

	 The Algorithm

The important ideas have been presented in the previous sections� We now present
the algorithm in detail�

In the beginning� each component contains a single vertex v � V of the input
graph G � �V�E�� so we initialize by setting root�v� to true for each v � V � The
edge�list of each component is also formed as described above� with 	rst� last� and
twin pointers� Each edge list is terminated by a fake edge� Then� the procedure
phase is executed dplgn e times� At the end� the vertex set V has been divided into
a number of equivalence classes containing the connected components�

�	



Procedure phase

�� Initialization

for each vertex v do in parallel

if root�v� then not�promoted�v��
subphase�v� � �
mate�v� � v

�� Component Promotion

for i� � to dplg n e do
execute subphase�i��

Comment� At the end of this step� each component is either promoted or done�
Each subphase takes time O�

p
log n ��

�� Contract the pseudoforest to rooted stars

for each vertex v such that not�root�v�� do in parallel

bold�v� � id�v� � id�p�v��

for i� � to d� � lgne do
for each vertex v in parallel do

v executes the appropriate CR rule

Comment� At the end of the last subphase components were rooted stars�
rooted trees or pseudotrees� This step gives enough time to the last two cate�
gories to become rooted stars before they enter the next phase� First� the rule
enabling step is executed and then� the CR rules are applied�

�� Rename edges and identify internal edges

for each edge �v�w� in parallel do

rename �v�w� to �p�v�� p�w��

for each edge �v� v� in parallel do

null��v� v��

Comment� Internal edges of rooted stars are easily recognized and nulli�ed�

��



�� Identify redundant edges

Run list�ranking on the edge�list of each component to �nd the distance of each
edge from the end of its list�

Copy each edge�list in an array using as index the results of the list ranking�

Sort the array 
	� ��� and use the results to form a sorted linked list�

for each edge �v�w� in parallel do

if next��v�w�� � �v�w� then null��v�w��

Comment� The sorting places all multiple edges in blocks of consecutive identi�
cally named edges� The last edge in a block of consecutive edges having identical
�v�w� names is kept as useful� The rest nullify themselves as redundant� Since
the useful edge �v�w� found in L�v� may� in general� di�er from the useful edge
�w� v� found in L�w�� some care must be taken for the twin function to be
recomputed correctly� Step � below takes care of this�

�� Remove internal and redundant edges�

for j � � to �dlg ne do
for each edge e do in parallel

if null�next�e��
then next�e� � next�next�e��

for each vertex v such that root�v� in parallel do

if null�first�L�v���
then first�L�v�� � next�first�L�v���

Comment� This step removes blocks containing up to m consecutive null edges�
However� if the �rst edge on some list was null� no pointer could have jumped
over it� and it cannot have been removed� The last step explicitly removes
any null edge from first�L�v��� The remaining edges satisfy Invariant � �Sec�
tion �����

�� Recomputation of the twin function�

for all edges �v�w� such that not�null��v�w��� in parallel do

let �v�� w�� � next��v�w��
let prev��v�� w��� � �v�w�
twin��v�w�� � prev�next�twin��w� v����

��



Comment� This �nal step recomputes the twin function of the useful edges
�v�w� in constant time as follows� First� observe that� after removing redun�
dant edges from an edge�list� all edges named �v�w�� useful and redundant�
point at the same location� This location is the edge �v�� w�� that comes lexi�
cographically after �v�w�� The useful edge �v�w� passes its address to a �eld
prev��v�� w��� From there� the useful edge �w� v� reads it� by following pointer
next�twin��w� v����

Procedure subphase�i�

�� The hooking step

for each vertex v such that root�v� and active�v� and not�promoted�v��
do in parallel

let �x� y� � first�L�v��
if �x� y� � nil then done�v�
else if x 	� v then promoted�v�
else if null��x� y�� then promoted�v�
else mate�v�� y

p�v� � y
not�root�v��

Comment� Roots of still active and possibly unpromoted components try to
pick an edge from their edge�list� If there is no edge in L�v�� i�e� first�L�v�� �
nil� its component is not connected to any other component and it is done� If
x 	� v then p�x� 	� v� and d�x � B �d�x is de�ned in Section ��� This indicates that
v was the root of a tree� not a star� If the edge found was null� v�s component
had more than B� null edges and therefore more than B vertices� In the last
two cases� v�s component is promoted� Otherwise� v can hook to its mate vertex
y� Also� note that mate�v� is used in our analysis but� in fact� it need not be
saved since it is de�ned by L�v� whenever it is needed�

�� Pseudotree contraction

for each vertex v such that not�root�v�� do in parallel

bold�v� � id�v� � id�p�v��

for j � � to d�plg n e do
for each vertex v do in parallel

v executes the appropriate CR rule

��



Comment� Vertices execute the rule enabling statement and then apply the
CR rules for d�plg n e times� which forces all components with fewer than B
members to become rooted stars� Observe that after this step components with
more than B members may become rooted trees or non�rooted pseudotrees�
This step takes O�

p
log n � time�

�� Root recognition step

for each vertex v such that p�v� � v do in parallel

root�v�
mate�v� � v
if subphase�v� � i� �

then subphase�v� � i
else promoted�v�

next�twin�first�L�v���� � next�last�L�v���
next�last�L�v���� nil

Comment� The new roots of the newly formed trees or stars identify them�
selves� If root v was also root in the previous subphase� its component may still
be unpromoted� But� if there was at least one subphase j� where subphase�v� �
j � i� during which v did not hook� then during subphase j vertex v belonged
to either a busy component or a rooted tree with height more than B that had
an internal hooking� In either case the component was promoted� Note that v
performed the edge�plugging step �step �� below� during subphase subphase�v��
Lemma � of the next subsection explains why the e�ect of v�s plugging step can
be reversed by the last two statements�

�� The edge�plugging step

for each vertex v such that not�root�v�� and subphase�v� � i� �
do in parallel

next�last�L�v���� next�twin��v�w���
next�twin��v�w���� first�L�v��

Comment� Non�root vertices that were roots in the previous subphase and
therefore hold an edge�list� plug it into their mate�s edge�list� At this point
each unpromoted star has all the edges of its component members contained in
its root�s edge�list �Lemmas �� ���

��



�� Edge renaming and identification of internal edges

for each edge �v�w� do in parallel

if p�v� � r and root�r�
then rename �v�w� to �r� w�

if p�w� � r and root�r�
then rename �v�w� to �v� r�

for each edge �r� r� do in parallel

null��r� r��

for each vertex v such that not�root�v�� and root�p�v�� in parallel do

null�last�L�v���

Comment� Edges identify their new endpoints� Those having both endpoints
on the same root are internal and so nullify themselves� The root�r� condition
assures that lists of non�rooted pseudotrees are not altered� Finally� the last
statement explicitly nulli�es the unnecessary fake edges at the end of the edge�
lists�

�� Null�edge removal

for j � � to �dplg n e� � do

for each edge e do in parallel

if null�next�e��
then next�e� � next�next�e��

for each vertex v such that root�v� do
if null�first�L�v���
then first�L�v�� � next�first�L�v���

Comment� Blocks composed of up to b��
p

lgnc consecutive null edges are re�
moved� Unpromoted stars now contain no null edges� This ensures that they
will have a successful hooking at the next subphase�

��




 Correctness and Time Bounds

Theorem � The algorithm correctly computes the connected components of a graph
in O�log��� n� parallel running time without concurrent writing�

Proof� Correctness follows from Lemma �� below� The running time comes from
the fact that there are dplg n e phases� each taking O�log n� parallel time� �

We prove that in the beginning of each subphase j� the root r of each rooted tree
P holds in L�r� all the edges �v�w� which in the beginning of phase i belonged to
the edge�lists L�v� of vertices v � P and were not deleted as internal in previous
subphases�

Let Gi � �Vi� Ei� be the input graph of phase i� We de�ne Mj � �Vi�mate� to be
the pointer graph composed of the mate pointers of Vi at the beginning of subphase
j� Note that Mj is a pseudoforest�

Lemma � At the beginning of subphase j each root r of a rooted tree �C�mate� in
Mj satis	es invariant 
�

Proof� We prove the lemma by induction on j� In the beginning of the �rst
subphase M� is composed of jV�j vertices� and the lemma holds true�

We assume that the lemma is true at the beginning of subphase j� During subphase
j the unpromoted roots of Mj hook to form larger components �step � of procedure
subphase�� Then� in step �� some roots recognize themselves as the roots of Mj���
We must prove that these roots satisfy invariant � �see page ��� at the beginning of
subphase j � ��

Let r be a root at the beginning of subphase j � �� We distinguish two cases�
��� r was also a root in the beginning of subphase j� Then� for every vertex v that

belonged to a tree which during the hooking step hooked on r�s tree� there is a path
of mate pointers from v to r� So� after the plugging step �step �� Lemma � applies�
Moreover� note that step � removes only null edges� Therefore� at the beginning of
subphase j � �� root r satis�es invariant ��

��� r was not a root in the beginning of subphase j� therefore r was a part of a
promoted component� We have seen �Lemma �� that the e�ect of having all vertices
in a cycle execute the plugging step �Figure ��� is to break the edge�lists in two rings�
To reverse the e�ect of plugging� re�join these two rings of edges into a chain� This
can be done by r in subphase j by executing the following statements�

next�twin�first�L�r���� � next�last�L�r���
next�last�L�r��� � nil
To prove that the above statements correctly re�join the rings� we have to show

that �a� first�L�r�� still points to edge �r� w�� the edge that r chose during its most

��



twin�r� w�

last�L�r��first�L�r��

w

r
w

r

Figure ��� Assume that� at a later subphase j� vertex r becomes the root of the
pseudotree� Then� r can easily reverse its edge�plugging� In the �gure� the dashed
line denotes one of the two pointers that must be changed� The other is the pointer
out of last�L�r��� which should become null�

��



recent hooking subphase j� � j� �b� twin��r� w�� � �w� r�� and �c� no edge shortcutted
over �r� w�� �w� r�� or last�L�r�� during subphases j� through j�

The first�L�r�� pointer is only altered in step � when root�r�� However� root�r�
was false in every subphase after j� and before j so �a� is true� Twin functions
are only computed at the end of a phase� not during subphases� so �b� is also true�
Finally� as one can see by examining step � of procedure subphase� these three edges
were never nulli�ed so� �c� is also true� �

We should note here that since only the edge�list of an already promoted compo�
nent is ever divided into two rings� one can actually postpone dealing with them until
the end of the phase� Then one can construct the edge�lists of the components from
scratch� This takes O�log n� time� so it can be done at no extra cost� The reason
that we chose to describe the rejoining steps as we did in Lemma � instead� was to
provide the details for an implementation of Algorithm � �Section ���

Lemma � If at the end of subphase j some component is busy� it has been promoted�

Proof� By de�nition� a component is busy if at the end of a subphase it is still
a pseudotree� Of course� such a component will not pick a mate in the beginning of
the next subphase because it has no root to do the operation� Procedure subphase

contracts the components for d� lgB e steps� So� according to Lemma �� pseudotrees
with circumference less than or equal to B will be rooted trees at the end of subphase
j and therefore not busy� Thus� a busy component had more than B members� and
so it has been promoted to the next phase� �

Lemma 
 Let C be a component which in subphase j has an internal hooking� Then
C has been promoted�

Proof� Recall that internal hooking happens when C picks as a mate an internal
edge �without knowing it�� Also note that such a hooking cannot happen in subphase �
because all components enter the �rst subphase without internal edges� So� j � ��

At the end of subphase j � � all components within distance B from the root
have reached the root �Lemmas � and �� and have nulli�ed the appropriate entries
in the root�s edge list �step � of procedure subphase�� So� an internal edge must be
connecting the root of the component to some vertex v in the tree� which was at a
distance more than B from the root� since it did not have enough time to reach the
root� Thus� there are at least B components that reached the root �namely� those in
the path from v to the root�� and so C has been promoted� �

Lemma �� If a component C fails to 	nd a mate at some subphase j� then either it
has been promoted or it is not connected to any other component�

��



Proof� Let C be a component that cannot �nd a mate at some subphase j of
phase i� We distinguish two cases� �a� C found no edges in its edge list� and �b� C
found a null edge in its edge list�

�a� According to Lemma �� in the beginning of each subphase the root of a com�
ponent C holds all the edges of its members that have not been removed as null� So� if
an edge of C was not null� it would be in C�s edge list� Therefore� C is not connected
to any other component in the graph�

�b� First we observe that j � �� Note that at the end of subphase j � � the
algorithm performed the null edge removal step for �dlgB e� � times� This removes
any block containing up to B� null edges from the edge list of the component�s root�
Next we observe that any component with fewer than B members cannot have more
than B�B� ���� internal edges� This is a consequence of Invariant �� So� a root may
�nd a null edge in its edge list only if its component is bigger than B and therefore
is promoted� �

Lemma �� Every active� non�promoted component at subphase j will have a suc�
cessful hooking at subphase j � ��

Proof� Let C be a component that is not promoted at the end of subphase j� C
is a rooted star because jCj � B � Also� by Lemma �� its root holds all the edges that
belonged to the edge�lists of its vertices and were not deleted in previous subphases�
Moreover� L�r� contains no internal edges because they were all identi�ed and deleted�
So� if L�r� contain any edges� r will have a successful hooking at the next subphase�
�

Lemma �� After dlgB e successful hookings in some phase� a component has been
promoted�

Proof� First we show that if a root r is not promoted after performing k successful
hookings� it was continuously hooking to components having successful hookings� For�
if one of these components had an internal hooking� it was promoted therefore� r�s
component was part of a promoted component�

Next� we can prove by induction that� after each successful hooking at subphase
j� components have sizes at least �j� Therefore after dlgB e successful hookings� r is
the root of a component of size B and thus has been promoted� �

Lemma �� At the end of phase i each component is either promoted or not connected
to any other components�

��



Proof� Each phase is composed of dlgB e subphases� In the beginning of a
subphase each component is either ready or busy� A busy component cannot pick a
mate� but� according to Lemma 	� it is a promoted pseudotree� On the other hand�
a ready component is a rooted tree which can pick a mate from its edge list that
contains all the edges of its members �Lemma ��� So� the reason for which a ready
component may not be able to �nd a mate �according to Lemma ���� is that the
component is promoted or done� Otherwise the component �nds a mate�

A hooking may either be successful or internal� An internal hooking� according to
Lemma �� can only happen to an already promoted component� So� we only have to
follow components which have successful hookings for dlgB e subphases� But these
components �Lemma ��� have been promoted at the end of the last subphase� �

Lemma �� In the beginning and at the end of each phase i �a� The components are
rooted stars� �b� The size of each active component is at least Bi� �c� Invariant � is
preserved� �d� There are no internal edges� �e� There is no concurrent writing�

Proof� �a� This is obviously true in the �rst phase� where components are com�
posed of a single vertex� the root� During the subphases� these components are hooked
to form a pseudoforest� Then� at step � of procedure phase� the pseudoforest is trans�
formed to a set of rooted stars� The remaining steps do not a�ect the structure of the
components� and so� in the beginning of the next phase� the components are stars�

�b� This is immediate from Lemma ���
�c� Again� invariant � �see page ��� is true for the �rst phase� For the remaining

phases� step � of procedure phase uses merge sort to identify multiple edges and the
step � removes them�

�d� Internal edges are nulli�ed in step � and are removed in step � of the procedure
phase�

�e� The elimination of concurrent writing has been discussed at the points where
preventing concurrent writing required new techniques� The absence of concurrent
writing follows from examination of the algorithm in Sections � and �� �

� Conclusions

We have presented an algorithm that �nds the connected components of an undirected
graph for the CREW PRAM model of parallel computation� This algorithm works
in O�log��� n� time� and narrows the gap of the performance between several CREW
and CRCW PRAM graph algorithms by a factor of log��� n�

This result settles a question that remained unresolved for many years because a
connectivity algorithm for this model with running time o�log� jV j� was a challenge

�	



that had thus far eluded researchers 
��� page 	���� Recently� Chong and Lam 
�� have
used a recursive version of our growth control schedule �Section �� to improve the
running time to O�log n log log n�� An apparently necessary idea of theirs not present
in our algorithm is to hook vertices of largest degree �rst� Also� since the results of
this paper were reported� Nisan� Szemer!edi� and Wigderson 
��� have described an
O�log n���� space algorithm for the single connectivity problem� This result subsumes
our time bound� but not our processor bound� A paper by Karger� Nisan� and Parnas

�	� which relates to this latter result has bounds equal to ours� Despite these several
results� however� a conjecture posed by Wyllie 
��� and Shiloach and Vishkin 
���
remains open� The conjecture states that no O�log n��time algorithm exists for the
exclusive�write PRAM model�

The techniques presented in this paper have been used to design new parallel
algorithms for the minimum spanning tree problem 
���� Other algorithms having
running times that depend on the connectivity algorithm include the Euler tour on
graphs 
�� ��� biconnectivity 
�	�� the ear decomposition 
��� ��� and its applications
on ��edge connectivity� triconnectivity� strong orientation� s�t numbering etc� See the
surveys by Karp and Ramachandran 
��� and by Vishkin 
��� for more details on this�

We should also mention that� with a minor modi�cation our algorithm works on
the weaker CREW PPM �Parallel Pointer Machine� model 
���� The modi�cation is
to substitute the sorting routine we use at the end of each phase by the asymptotically
optimal sorting algorithm of Goodrich and Kosaraju 
���� In the PPM model� the
memory can be viewed as a directed graph whose vertices correspond to memory cells�
each having a constant number of �elds� The PPM is based on a generalization of
Knuth�s linking automaton�

Acknowledgements� The authors would like to thank Prof� Adonis Simvonis
and the anonymous referee for their careful reading of this paper and substantial help
in improving the presentation�

References


�� A� Aggarwal� R�J� Anderson� and M��Y� Kao� Parallel depth��rst search in gen�
eral directed graphs� In Proc� 
�st Annual ACM Symposium on the Theory of
Computing� pages ���"��	� May ����� ��	��


�� M� Ajtai� J� Koml!os� and E� Szemer!edi� Sorting in c log n parallel steps� Combi�
natorica� ���"��� ��	��


�� M� Atallah and U� Vishkin� Finding Euler tours in parallel� Journal of Computer
and System Sciences� ������"���� ��	��

��




�� B� Awerbuch� A� Israeli� and Y� Shiloach� Finding Euler circuits in logarithmic
parallel time� In Proc� ��th Annual ACM Symposium on Theory of Computing�
pages ���"���� ��	��


�� B� Awerbuch and Y� Shiloach� New connectivity and MSF algorithms for shu#e�
exchange network and PRAM� IEEE Transactions on Computers� C�������	"
����� ��	��


�� F�Y� Chin� J� Lam� and I�N� Chen� E�cient parallel algorithms for some graph
problems� Communications of ACM� ���������"���� September ��	��


�� K�W� Chong and T�W� Lam� Finding connected components in O�log n log log n�
time on the EREW PRAM� In Proc� 
th ACM�SIAM Symposium on Discrete
Algorithms� January �����


	� R� Cole� Parallel merge sort� SIAM Journal of Computing� ���������"�	�� August
��		�


�� R� Cole and U� Vishkin� Approximate and exact parallel scheduling with appli�
cations to list� tree and graph problems� In Proc� 
�th Annual IEEE Symposium
on Foundations of Computer Science� pages ��	"���� ��	��


��� S� Cook� C� Dwork� and R� Reischuk� Upper and lower time bounds for par�
allel random access machines without simultaneous writes� SIAM Journal of
Computing� ������	�"��� February ��	��


��� H� Gazit� An optimal randomized parallel algorithm for �nding connected com�
ponents in a graph� SIAM Journal of Computing� pages ����"����� �����


��� A� Goldberg� S� Plotkin� and G� Shannon� Parallel symmetry�breaking in sparse
graphs� In Proc� ��th Annual ACM Symposium on Theory of Computing� pages
���"���� ��	��


��� M�T� Goodrich and S�R� Kosaraju� Sorting on a parallel pointer machine with
applications to set expression evaluation� In Proc� ��th IEEE Symposium on
Foundations of Computer Science� pages ���"���� ��	��


��� T� Hagerup� Towards optimal parallel bucket sorting� Informaton and Compu�
tation� �����"��� ��	��


��� D�S� Hirschberg� A�K� Chandra� and D�V� Sarwate� Computing connected com�
ponents on parallel computers� Communications of ACM� ���	�����"���� August
�����

��




��� D�B� Johnson and P� Metaxas� Connected components in O�log��� jV j� paral�
lel time for the CREW PRAM �extended abstract�� In Proc� of �
nd IEEE
Symposium on the Foundations of Computer Science� pages �		"���� October
�����


��� D�B� Johnson and P� Metaxas� A parallel algorithm for computing minimum
spanning trees� In Proc� 
th Annual ACM Symposium on Parallel Algorithms
and Architectures� pages ���"���� June �����


�	� D� R� Karger� N� Nisan� and M� Parnas� Fast connected components algorithms
for the EREW PRAM� In Proc� of 
th Symposium on Parallel Algorithms and
Architectures� pages ���"�	�� June �����


��� R� Karp and V� Ramachandran� Parallel algorithms for shared�memory ma�
chines� Handbook for Theoretical Computer Science� ��	��"���� �����


��� Y� Maon� B� Schieber� and U� Vishkin� Parallel ear decomposition search �EDS�
and s�t numbering in graphs� Theoretical Computer Science� ������"��	� ��	��


��� P� Metaxas� Parallel Algorithms for Graph Problems� PhD thesis� Department
of Mathematics and Computer Science� Dartmouth College� Hanover� NH� July
�����


��� G�L� Miller and V� Ramachandran� E�cient parallel ear decomposition with
applications� Manuscript� ��	�� An updated version appears in Chapter � of
J�H� Reif� ed�� Synthesis of Parallel Algorithms� Morgan Kaufman� �����


��� D� Nath and S�N� Maheshwari� Parallel algorithms for the connected components
and minimal spanning tree problems� Information Processing Letters� �������"���
March ��	��


��� N� Nisan� E� Szemer!edi� and A� Wigderson� Undirected connectivity in O�log��
n�
space� In Proc� of ��rd Annual IEEE Symposium on Foundations of Computer
Science� pages ��"��� IEEE� October �����


��� J� Reif� Depth��rst search is inherently sequential� Information Processing Let�
ters� ������"���� ��	��


��� Y� Shiloach and U� Vishkin� An O�log n� parallel connectivity algorithm� Journal
of Algorithms� ����"��� ��	��


��� R�E Tarjan� Depth��rst search and linear graph algorithms� SIAM Journal on
Computing� ����� �����

��




�	� R�E� Tarjan and U� Vishkin� An e�cient parallel biconnectivity algorithm� SIAM
Journal of Computing� ������	��"	��� ��	��


��� U� Vishkin� Implementation of simultaneous memory address access in models
that forbid it� Journal of Algorithms� ����"��� ��	��


��� U� Vishkin� On e�cient parallel strong orientation� Information Processing
Letters� ������"���� June ��	��


��� U� Vishkin� Structural parallel algorithms� Technical Report UMIACS�TR����
��� CS�TR������ University of Maryland� College Park� Maryland ������ April
�����


��� R�J� Wilson� Introduction to Graph Theory� Longman� Inc�� New York� �rd
edition� ��	��


��� J�C� Wyllie� The Complexity of Parallel Computation� PhD thesis� Computer
Science Dept�� Cornell University� Ithaca� NY� August ��	��

��



Symbols Used in Paper�

O�� � �� Big �Oh�� italic� in formulas
O capital �Oh� in text
o lower case �oh� in text
o�� � �� Little �oh�� italic� in formulas
�� �� �� �� � � � Arabic numerals� Must distinguish � �zero� from �Oh�s
a�b�� � ��k�l�m�n lower case English letters in text
lg logarithm symbol in math formulas� Roman type as shown
log logarithm symbol in math formulas� Roman type as shown
k� l�m� n� � � � italic lower case English letters in math formulas
G�E� V� � � � italic upper case English letters in math formulas
� Greek alpha in math formulas

��


	Wellesley College
	Wellesley College Digital Scholarship and Archive
	1997

	Connected Components in O(log3/2 n) Parallel Time for the CREW PRAM
	Donald B. Johnson
	P. Takis Metaxas
	Recommended Citation


	jcss.dvi

